You are here

Thermogravimetric analysis of agar hydrogels in combination with honey and sesame flour for the product

An important factor in the stability and quality of gels during production, storage and use as part of confectionery and culinary products is their heat resistance, which depends on the ingredient composition and the content of dry substances. The article is devoted to the thermogravimetric analysis of agar-based hydrogels in combination with honey and sesame flour for the production of bars. The study consisted of two stages. At the first, experimental samples were studied - individual ingredients of the finished hydrogel: agar 1200 TM "Fujian Province" (China), food glycerin TM BASF (Germany), sunflower honey and sesame flour TM "Useful flour" (Ukraine). At the second stage, samples of agar hydrogels were prepared with the required amount of auxiliary ingredients: "agar 1%-water-glycerol 0.2%", "agar 1%-water-glycerol 0.2%-honey 25%", "agar 1%- water-glycerin 0.2%-honey 25%-sesame flour 20%".The comparative analysis of the curves showed that at all stages of decomposition of the experimental samples, mass losses occur due to water evaporation. It was investigated that the final mass loss for pure agar from the beginning of the experiment was 16.91% (16.75 mg), the change in the mass of glycerin was 0.17% (0.21 mg), the mass loss of sunflower honey was 46.06% ( 56.20 mg.), and for sesame flour, the mass change was 7.25% (8.92 mg). However, in complex gels, there was a decrease in the rate of water removal, which is associated with the appearance of additional bonds between agar and recipe components - honey and sesame flour. It was established that at the end of the experiment, the mass of the test sample, namely "agar-water-glycerin", changed by 42% (44.10 mg), the mass loss of the "agar-water-glycerin-sunflower honey" sample was 33.40% ( 36.74 mg.), the mass of the sample "agar-water-glycerin-sunflower honey-sesame flour" gradually decreased and at the end of the experiment changed by 28.82% (34.59 mg) at the temperature, which is associated with the evaporation of water phases.

Key words: thermogravimetric analysis, derivatograms, agar, honey, glycerin, sesame flour, hydrogels.

 

 

  1. Dorokhovych, A. M., Murzin, A. V., Klepikov, I. L. (2014). Tyksotropiiakondyterskykh aharovykh heliv [Thixotropy of confectionery agar gels]. Hlebnyj i konditerskij biznes [Bread and confectionery business]. no. 6 (19), pp. 34–37. Available at:http://dspace.nuft. edu.ua/jspui/ handle/123456789/20285.
  2. Sokolovska, I. O., Kambulova, Yu. V., Overchuk, N. O. (2016). Doslidzhennia stupeniu zviazuvannia vody v heliakh pektynu i alhinatu natriiu [Study of the degree of water binding in pectin and sodium alginate gels]. Eastern-European Journal of Enterprise Technologies, no. 2 (11), pp. 1–11. DOI:10.15587/1729-4061.2016.65746.
  3. Shanina, O. M., Borovikova, N. O., Havrysh, T. V., Duhina, K. V., Feizopulo, O.E. (2019). Vplyv dobavok bilkovoi ta polisakharydnoi pryrody na volohoutrymuiuchu zdatnist bezkleikovynnoho tista [The effect of protein and polysaccharide additives on the moisture-retaining capacity of gluten-free dough]. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva [Bulletin of Kharkiv National Technical University of Agriculture]. no. 207, pp. 132–141. Available at:https://repo.btu. kharkov.ua//handle/123456789/ 4970.
  4. Koshel, O. Yu., Pertsevoi, F. V., Marchenko, O. S., Chuiko, O. V., Samilyk, M. M. (2020). Deryvatohrafichni doslidzhennia komponentiv rozroblenykh molokovmisnykh termostabilnykh nachynok z zhelatynom ta transhliutaminazoiu. [Derivatographic studies of the components of the developed milk-containing thermostable fillings with gelatin and transglutaminase]. Naukovyi visnyk TDATU [Scientific Bulletin of TDATU]. no. 10, pp. 232–238. Available at: http://repo.snau. edu. ua:8080/xmlui/handle/123456789/9029.
  5. Ouyang, Q. Q., Zhang, H., Li, S. D., Quan, W. Y., Wen, L. L., Yang, Z. M., Li, P. W. (2018). Thermal degradation of agar: mechanism and toxicity of products. Food Chemistry, vol. 264, pp. 277–283. DOI:10.1016/j.foodchem.2018.04.098.
  6. Shankar, S., Reddy, J. P., Rhim, J. W. (2015). Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films. International Journal of Biological Macromolecules, vol. 81, pp. 267–273. DOI:10.1016/j. ijbiomac.2015.08.015.
  7. Kasprzyk, I., Depciuch, J., Grabek-Lejko, D., Parlinska-Wojtan, M. (2018). FTIR-ATR Spectroscopy of Pollen and Honey as a Tool for Unifloral Honey Authentication. The Case Study of Rape Honey. Food Control, vol. 84, pp. 33–40. DOI:10.1016/j. foodcont.2017.07.015.
  8. Martínez-Sanz, M., Gómez-Mascaraque, L. G., Ballester, A. R. (2019). Production of unpurified agarbased extracts from red seaweed Gelidium sesquipedale by means of simplified extraction protocols. Algal Research, vol. 38, 101420 p. DOI:10.1016/j. algal.2019.101420.
  9. Xiao, Y. D., Huang, W. Y., Li, D. J., Song, J. F., Liu, C. Q., Wei, Q. Y., Zhang, M., Yang, Q. M. (2018). Thermal degradation kinetics of all-trans and ciscarotenoids in a light-induced model system. Food Chemistry, vol. 239, pp. 360–368. DOI:10.1016/j. foodchem.2017.06.107.
  10. Pradhan, G., Chandra Sharma, Y. (2020). Studies on green synthesis of glycerol carbonate from waste cooking oil derived glycerol over an economically viable NiMgOx heterogeneous solid base catalyst. Journal of Cleaner Production, vol. 264, 121258 p. DOI:10.1016/j.jclepro.2020. 121258.
  11. Yalcin, A., Soddu, E., Turunc Bayrakdar, E., Uyanikgil, Y., Kanit, L., Armagan, G., Rassu, G., Gavini, E., Giunchedi, P. (2016). Neuroprotective Effects of Engineered Polymeric Nasal Microspheres Containing Hydroxypropyl-β-cyclodextrin on β-Amyloid (1-42)– Induced Toxicity. Journal of Pharmaceutical Sciences, vol. 105 (8). pp. 2372–2380. DOI:10.1016/j.xphs. 2016.05.017.
  12. Gok, S., Severcan, M., Goormaghtigh, E., Kandemir, I., Severcan, F. (2015). Differentiation of Anatolian Honey Samples from Different Botanical Origins by ATR-FTIR Spectroscopy Using Multivariate Analysis. Food Chemistry, vol. 170, pp. 234–240. DOI:10.1016/j. foodchem.2014.08.040.
  13. Pauliuc, D., Dranca, F., Ropciuc, S., Oroian, M. (2022). Advanced Characterization of Monofloral Honeys from Romania. Food Agriculture, Vol. 12 (4), 526 p. DOI:10.3390/agriculture 12040526.
  14. Siddiqui, A. J., Musharraf, S. G., Choudhary, M. I., Rahman, A. (2017). Application of Analytical Methods in Authentication and Adulteration of Honey. Food Chem., vol. 217, pp. 687–698. DOI:10.1016/j.foodchem.2016.09.001.
  15. Singh, I., Singh, S. (2018). Honey Moisture Reduction and Its Quality. Journal of Food Science and Technology, vol. 55, pp. 3861–3871. DOI:10.1007/ s13197-018-3341-5.
  16. Silva, I. A. A., Souza, A. L., Cordeiro, A. M., Soledade T. M., L. E. B., Queiroz, N., Souza, A. G. (2013). Thermal degradation of honeys and evaluation of physicochemical properties. Journal of Thermal Analysis and Calorimetry, vol. 114, pp. 353–358. DOI:10.1007/s10973-012-2926-x.
  17. Shankar, S., Rhim, J. W. (2016). Tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial PBAT/silver nanoparticles composite films. LWT - Food Science and Technology, vol. 72, pp. 149–156. DOI:10.1016/j.lwt.2016.04.054
  18. Fathiraja, P., Gopalrajan, S., Karunanithi, M. (2022). Process optimization and characterization of composite biopolymer films obtained from fish scale gelatin, agar and chitosan using response surface methodology. Polymer Bulletin. DOI:10.1007/s00289-022-04540-4.
  19. Vidal, A., Sanchis, V., Ramos, A. J., Marin, S. (2015). Thermal stability and kinetics of degradation of deoxynivalenol, deoxynivalenol conjugates and ochratoxin A during baking of wheat bakery products. Food Chemistry, vol. 178, pp. 276–-286. DOI:10.1016/j. foodchem.2015.01.098.
  20. Shankar, S., Teng, X., Rhim, J. W. (2014). Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohydrate Polymers, vol. 114, pp. 484–492. DOI:10.1016/j.carbpol.2014.08.036.
  21. Ghosh, M., Upadhyay, R., Mahato, D. K., Mishra, H. N. (2019). Thermal and oxidative stability assessment of synergistic blends of sunflower and sesame oils tailored for nutritionally stable composition of omega fatty acids. Journal of Thermal Analysis and Calorimetry, vol. 135, pp. 2389–2398. DOI:10.1007/ s10973-018-7342-4.
  22. Bhatnagar, A. S., Hemavathy, J., Krishna, A. G. (2015). Development of a rapid method for determination of lignans content in sesame oil. Journal of Food Science and Technology, vol. 52, pp. 521–527. DOI:10.1007/s13197-013-1012-0.
AttachmentSize
PDF icon bokovets_1_2023.pdf2.56 MB