You are here
The Influence of genotypic and phenotypic factors on indicators of cow comfort
The aim of this article is to summarize the available knowledge about the effects of temperature stress on cow health, productivity and comfort levels, and to discuss management strategies that would mitigate these factors. he study of the influence of weather phenomena on behavioral and physiological processes takes an important place in the development of highly effective methods for managing dairy cattle breeding. Climate and weather factors have become important in the system of interaction «organism-environment». One of the main factors in increasing the comfort indicators of conditions for keeping cows in premises of various types, on walking grounds and on pastures is the creation of such microclimate indicators that would better correspond to the biological needs of dairy cows, depending on the season and productivity. Among the weather factors affecting the functioning of dairy cattle, the ambient temperature has the greatest influence, (the temperature in the range from -5 to 25 °C is thermally neutral for the organism of dairy cattle). Due to the constancy of metabolic processes, the body of cattle is very vulnerable to the effects of ambient temperature. This is especially felt during periods of prolonged low or high temperature loads. Disruption of metabolic and thermoregulatory processes directly affects the duration and nature of behavioral and physiological reactions and causes stress in animals. Prolonged temperature stress is the cause of fluctuations in productivity indicators, the qualitative composition of milk, problems with reproduction and, taken together, significantly affects the profitability of production. To reduce the effect of temperature stresses on the body of dairy cows, scientists have proposed management strategies during periods of high and low temperature loads. These strategies divided into genotypic: selection of temperature resistant individuals of different breeds and phenotypic: the use of microclimate control means and modernization of feeding management methods.
Key words: cows, temperature stresses, productivity, comfort, behavior, housing options.
1. Weller, J.I., Ezra, E., Ron, M. (2017). Invited review: A perspective on the future of genomic selection in dairy cattle. Journal of Dairy Science. Vol. 100 (11), pp. 8633–8644. DOI:10.3168/jds.2017-12879
2. Upadhyay, M., Chen, W., Lenstra, J., Goderie, C.R.J., MacHugh, D.E., Park, S.D.E., Magee, D.A., Matussino, D., Ciani, F., Megens, H.J., van Arendonk, J.A.M., Groenen, M.A.M. (2017). Genetic origin, admixture and population history of aurochs (Bosprimigenius) and primitive European cattle. Heredity. Vol. 118, pp. 169–176. DOI:10.1038/hdy.2016.7
3. Berman, A. (2011). Invited review: are adaptations present to support dairy cattle productivity in warm climates? Journal of Dairy Science. Vol. 94 (5), pp. 2147–2158. DOI:10.3168/jds.2010-3962
4. Zhang, H., Paijmans, J., Chang, F., Wu, X., Chen, G., Lei, C., Yang, X., Wei, Z., Bradley, B.G., Orlando, L., O’Connor, T., Hofreiter, M. (2013). Morphological and genetic evidence for early Holocene cattle management in northeastern China. Nature Communications. Vol. 4, e2755. DOI:10.1038/ncomms3755
5. Scheu, A., Powell, A., Bollongino, R., Vigne, J.P., Tresset, A., Carirlar, C., Benecke, N., Burger, J. (2015). The genetic prehistory of domesticated cattle from their origin to the spread across Europe. BMC Genetics. 2015. Vol. 16, 54 p. DOI:10.1186/s12863-015-0203-2
6. WMO: WMO Statement on the state of the global climate in2017, in: WMO-No.1212, Publications Board World Meteorological Organization (WMO), World Meteorological Organization,Geneva, Switzerland, 2018.
7. Hempel, S., Menz, C., Pinto, S., Galan, E., Janke, D., Estellés, F., Müschner-Siemens, T., Wang, X., Heinicke, J., Zhang, G., Amon, B., del Prado, A., Amon, T. (2019). Heat stress risk in European dairy cattle husbandry under different climate change scenarios – uncertainties and potential impacts. Earth System Dynamics. Vol. 10, pp. 859–884. DOI:10.5194/esd-10-859-2019
8. Solymosi, N., Torma, C., Kern, A., Maroti-Agots, A., Barcza, Z., Könyves, L., Berke, O., Reiczigel, J. (2010). Changing climate in Hungary and trends in the annual number of heat stress days. International Journal of Biometeorology. Vol. 54, pp. 423–431. DOI:10.1007/s00484-009-0293-5
9. Novak, P., Vokralova, J., Broucek, J. (2009). Effects of the stage and number of lactation on milk yield of dairy cows kept in open barn during high temperatures in summer months. Archiv fur Tierzucht. Vol. 52, pp. 574–586. DOI:10.5194/aab-52-574-2009
10. Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science. Vol. 130, pp. 57–69. DOI:10.1016/j.livsci.2010.02.011
11. Food and Agriculture Organization of the United Nations (FAO): The Impact of Disasters on Agriculture – Assessing the information gap. Available at:http://www.fao.org/3/a-i7279e.pdf (last access: 21 December 2020), 2017.
12. Vitt, R., Weber, L., Zollitsch, W., Hörtenhuber, S.J., Baumgartner, J., Niebuhr, K., Piringer, M., Anders, I., Andre,K., Hennig-Pauka, I., Schönhart, M., Schauberger, G. (2017). Modelled performance of energy saving air treatment devices to mitigate heat stress for confined livestock buildings in Central Europe. Biosystems Engineering. Vol. 164. P. 85– 97. DOI:10.1016/j.biosystemseng. 2017.09.013
13. Broucek, J., Letkovicová, M., Kovalcuj, K. (1991). Estimation of cold stress effect on dairy cows. International Journal of Biometeorology. Vol. 35, pp. 29–32. DOI:10.1007/BF01040960
14. Angrecka, S., Herbut, P. (2015). Conditions for cold stress development in dairy cattle kept in free stall barn during severe frosts. Czech Journal of Animal Science. Vol. 60, pp. 81–87. DOI:10.17221/7978-CJAS
15. Galán, E., Llonch, P., Villagrá, A., Levit, H., Pinto, S., del Prado, A. (2018). A systematic review of non productivity-related animal-based indicators of heat stress resilience in dairy cattle. PloS One. Vol. 13, e0206520. DOI:10.1371/journal.pone.0206520,2018.
16. Mader, T.L., Davis, M., Brown-Brandl, T. (2006). Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science. Vol. 84, pp. 712–719. DOI:10.2527/2006.843712x
17. Johnson, J.S. (2018). Heat stress: Impact on livestock well-being and productivity and mitigation strategies to alleviate the negative effects. Animal Production Science. Vol. 58 (8), pp. 1404–1413. DOI:10.1071/AN17725
18. Kim, E.S., Cole, J.B., Huson, H., Wiggans, G.R., Van Tassell, C.P., Crooker, B.A., Liu, G., Da, Y., Sonstegard, T.S. (2013). Effect of artificial selection on runs of homozygosity in US Holstein cattle. PLoS One. Vol. 8 (11), e80813. DOI:10.1371/journal.pone.0080813
19. Kim, E.S., Sonstegard, T.S., Van Tassell, C.P., Wiggans, G., Rothschild, M.F. (2015). The relationship between runs of homozygosity and inbreeding in Jersey cattle under selection. PLoS One. Vol. 10 (7), e0129967. DOI:10.1371/journal.pone.0129967
20. Srikanth, K., Kwon, A., Lee, E., Chung, H. (2017). Characterization of genes and pathways that respond to heat stress in Holstein calves through transcriptome analysis. Cell Stress and Chaperones. Vol. 22, pp. 29–42. DOI:10.1007/s12192-016-0739-8
21. Liu, S., Yue, T., Ahmad, M.J., Hu, X., Zhang, X., Deng, T., Hu, Y., He, C., Zhou, Y., Yang, L. (2020). Transcriptome Analysis Reveals Potential Regulatory Genes Related to Heat Tolerance in Holstein Dairy Cattle. Genes. Vol. 11(1), 68 p. DOI:10.3390/genes11010068
22. Dikmen, S., Alava, E., Pontes, E., Fear, J.M., Dikmen, B.Y., Olson, T.A., Hansen, P.J. (2008). Differences in Thermoregulatory Ability between Slick-Haired and WildType Lactating Holstein Cows in Response to Acute Heat Stress. Journal of Dairy Science. Vol. 91(9), pp. 3395–3402. DOI:10.3168/jds.2008-1072
23. Bernabucci, U., Lacetera, N., Baumgard, L.H., Rhoads, R.P., Ronchi, B., Nardone, A. (2010). Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal. Vol. 4 (7), pp. 1167–1183. DOI:10.1017/S175173111000090X
24. Mariasegaram, R., Chase, C.C., Jr Chaparro, J.X., Olson, T.A., Brenneman, R.A., Niedz, R.P. (2007). The slick air coat locus maps to chromosome 20 in Senepol-derived cattle. Animal Genetics. Vol. 38, pp. 54–59. DOI:10.1111/ j.1365-2052.2007.01560.x
25. Kim, J., Hanotte, O., Mwai, O.A., Dessie,T., Bashir, S., Diallo, B., Agaba, M., Kim, K., Kwak,W., Sung, S., Seo, M., Jeong, H., Kwon, T., Taye, M., Song, K.D., Lim, D., Cho, S., Lee, H.J., Yoon, D., Oh, S.J., Kemp, S., Lee, H.K., Kim, H. (2017). The genome landscape of indigenous African cattle. Genome Biology. Vol. 18, 34 p. DOI:10.1186/s13059-017-1153-y
26. Collier, R.J., Collier, J.L., Rhoads, R.P., Baumgard, L.H. (2008). Invited review: Genes involved in the bovine heat stress response. Journal of Dairy Science. Vol. 91(2), pp. 445–454. DOI:10.3168/jds.2007-0540
27. Charoensook, R., Gatphayak, K., Sharifi, A.R., Chaisongkram, C., Brenig, B., Knorr, C. (2012). Polymorphisms in the bovine HSP90AB1 gene are associated with heat tolerance in Thai indigenous cattle. Tropical Animal Health and Production. Vol. 44, pp. 921–928. DOI:10.1007/s11250-011-9989-8
28. Li, Q.L., Ju, Z.H., Huang, J.M., Li, J.B., Li, R.L., Hou, M.H., Wang, C.F., Zhong, J.F. (2011). Two novel SNPs in HSF1 gene are associated with thermal tolerance traits in Chinese Holstein cattle. DNA and Cell Biology. Vol. 30, pp. 247–254. DOI:10.1089/dna.2010.1133
29. Li, Q., Han, J., Du, F., Ju, Z., Huang, J., Wang, J., Li, R., Wang, C., Zhong, J. (2011). Novel SNPs in HSP70A1Agene and the association of polymorphisms with thermos tolerance traits and tissue specific expression in Chinese Holstein cattle. Molecular Biology Reports. Vol. 38, pp. 2657–2663. DOI:10.1007/s11033-010-0407-5
30. Wang, Y., Huang, J., Xia, P., He, J., Wang, C., Ju, Z., Li, J., Li, R., Zhong, J., Li, Q. (2013). Genetic variations of HSBP1 gene and its effect on thermal performance traits in Chinese Holstein cattle. Molecular Biology Reports. Vol. 40, pp. 3877–3882. DOI:10.1007/s11033-012-1977-1
31. Min, L., Li, D., Tong, X., Nan, X., Ding, D., Xu, B., Wang, G. (2019). Nutritional strategies for alleviating the detrimental effects of heat stress in dairy cows: a review. International Journal of Biometeorology. Vol. 63(9), pp. 1283–1302. DOI:10.1007/s00484-019-01744-8
32. Shan, Q., Ma, F.T., Jin, Y.H, Gao, D., Li, H.Y., Sun, P. (2020). Chromium yeast alleviates heat stress by improving antioxidant and immune function in Holstein mid-lactation dairy cows. Animal Feed Science and Technology. Vol. 269, 114635 p. DOI:10.1016/j.anifeedsci.2020.114635
33. Kadzere, C.T., Murphy, M.R., Silanikove, N., Maltz, E. (2002). Heat stress in lactating dairy cows: a review. Livestock Production Science. Vol. 77, pp. 59–91. DOI:10.1016/S0301-6226(01)00330-X
34. West, J. (2003). Effects of heat-stress on production in dairy cattle. Journal of Dairy Science. Vol. 86, pp. 2131–2144. DOI:10.3168/jds.S0022-0302(03)73803-X
35. Kang, H.J., Piao, M.Y., Park, S.J., Na, S.W., Kim, H.J., Baik, M. (2019). Effects of ambient temperature and rumen–protected fat supplementation on growth performance, rumen fermentation and blood parameters during cold season in Korean cattle steers. Asian-Australas Journal of Animal Science. Vol. 32(5), pp. 657–664. DOI:10.5713/ajas.18.0621
36. Ghasemi, E., Azad-Shahraki, M., Khorvash, M. (2017). Effect of different fat supplements on performance of dairy calves during cold season. Journal of Dairy Science. Vol. 100 (7), pp. 5319–5328. DOI:10.3168/jds.2016-11827
37. Spiers, D., Spain, J., Sampson, J., Rhoads, R. (2004). Use of physiological parameters to predict milk yield and feed intake in heat stressed dairy cows. Journal of Thermal Biology. Vol. 29, pp. 759–764. DOI:10.1016/j.jtherbio.2004.08.051
38. Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: A review. Veterinary World. Vol. 9(3), pp. 260–268. DOI:10.14202/vetworld.2016.260-268
39. Lacetera, N., Bernabucci, U., Ronchi, B., Nardone, A. (1996). Body condition score, metabolicstatus and milk production of early lactating dairy cows exposed to warm environment. Rivista di Agricoltura Subtropicale e Tropicale (Italia). Vol. 90(1), pp. 43–55.
40. Rojas-Downing, M., Nejadhashemi, P., Harrigan, T., Woznicki, S.A. (2017). Climate change and livestock: Impacts, adaptation, andmitigation. Climate Risk Management. Vol. 16, pp. 145–163. DOI:10.1016/j.crm.2017.02.001
41. Laporta, J., Fabris, T.F., Skibiel, A.L., Powell, J.L., Hayen, M.J., Horvath, K., Miller-Cushon, E.K., Dahl, G.E. (2017). In utero exposure to heat stress during late gestation has prolonged effects on the activity patterns and growth of dairy calves. Journal of Dairy Science. Vol. 100(4), pp. 2976–2984. DOI:10.3168/jds.2016-11993
42. Fabris, T.F., Laporta, J., Skibiel, A.L., Corra, F.N., Senn, B.D., Wohlgemuth, S.E., Dahl, G.E. (2019). Effect of heat stress during early, late, and entire dry period on dairy cattle. Journal of Dairy Science. Vol. 102, pp. 5647–5656. DOI:10.3168/jds.2018-15721
43. Sunil Kumar, B.V., Singh, G., Meur, S.K. (2010). Effects of Addition of electrolyte and ascorbic acid in feed during heat stress in buffaloes. Asian-Australasian Journal of Animal Sciences. Vol. 23(7), pp. 880–888. DOI:10.5713/ajas.2010.90053
44. von Keyserlingk, M.A.G., Rushen, J., de Passille, A.M., Weary, D.M. (2009). Invited review: The welfare of dairy cattle – Key concepts and the role of science. – Journal of Dairy Science. Vol. 92, pp. 4101–4111. DOI:10.3168/jds.2012-6354.
45. Bruno, R.G.S., Rutiglianoa, H.M., Cerri, R.L., Robinson, P.H., Santos, J.E.P. (2009). Effect of feeding Saccharomyces Cerevisiae on performance of dairy cows during summer heat stress. Animal Feed Science and Technology. Vol. 150, pp. 175–186. DOI:10.1016/j.anifeedsci.2008.09.001
46. Gonzalez-Rivas, P.A., Sullivan, M., Cottrell, J.J., Leury, B.J., Gaughan, J.B., Dushea,F.R. (2018). Effect of feeding slowly fermentable grains on productive variables and amelioration of heat stress in lactating dairy cows in a sub-tropical summer. Tropical Animal Health and Production. Vol. 50, pp. 1763–1769. DOI:10.1007/s11250-018-1616-5
47. Leiva, T., Cooke, R.F., Brandão, A.P., Schubach, K.M., Batista, L.F.D., Miranda, M.F., Colombo, E.A., Rodrigues, R.O., Junior, J.R.G., Cerri, R.L.A., Vasconcelos, J.L.M. (2017). Supplementing an immunomodulatory feed ingredient to modulate thermoregulation, physiologic, and production responses in lactating dairy cows under heat stress conditions. Journal of Dairy Science. Vol. 100(6), pp. 4829– 4838. DOI:10.3168/jds.2016-12258.
48. Knizkova, I., Kunc, P., Koubkova, M., Flusser, J., Dolezal, O. (2002). Evaluation of naturally ventilated dairy barn management by a thermographic method. Livestock Production Science. Vol. 77, pp. 349–353. DOI:10.1016/ S0301-6226(02)00062-3
49. Gregory, N.G. (1995). The role of shelterbelts in protecting livestock: a review. New Zealand Journal of Agricultural Research. Vol. 38, pp. 423–450. DOI: 10.1080/00288233.1995.9513146
50. Yurchenko, A., Daetwyler, H.D., Yudin, N., Robert, D., Schnabel, R.D., Jagt, C.J., Soloshenko, V., Lhasaranov, B., Popov, R., Taylor, J., Larkin, D.M. (2018). Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation. Scientific Reports. Vol. 8, 12984. DOI:10.1038/ s41598-018-31304-w
51. Bouraoui, R., Lahmar, M., Majdoub, A., Djemali, M., Belyea, R. (2002). The relationship of temperaturehumidity index with milk production of dairy cows in a Mediterranean climate. Animal Research. Vol. 51, pp. 479– 491. DOI:10.1051/ animres:2002036
52. Dikmen, S., Hansen, P. (2009). Is the temperaturehumidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? Journal of Dairy Science. Vol. 92, pp. 109–116. DOI:10.3168/jds.2008-1370
53. Borshch, O.O., Gutyj, B.V., Borshch, O.V., Sobolev, O.I., Chernyuk, S.V., Rudenko, O.P., Kalyn, B.M., Lytvyn, N.A., Savchuk, L.B., Kit, L.P., Nahirniak, T.B., Kropyvka, S.I., Pundyak, T.O. (2020). Environmental pollution caused by the manure storage. Ukrainian Journal of Ecology. Vol. 10(3), pp. 110–114.
54. Borshch, O.O., Ruban, S., Borshch, O.V. (2021). Review: the influence of genotypic and phenotypic factors on the comfortand welfare rates of cows during the period of global climatechanges. Agraarteadus. Vol. 32(1), pp. 25–34. DOI:10.15159/jas.21.12.
55. Ruban, S., Borshch, O.O., Borshch, O.V., Orischuk, O., Balatskiy, Y., Fedorchenko, M., Kachan, A., Zlochevskiy, M. (2020). The impact of high temperatures on respiration rate, breathing condition and productivity of dairy cows in different production systems. Animal Science Papers and Reports. Vol. 38(l), pp. 61–72.
56. Zähner, M., Schrader, L., Hauser, R., Keck, M., Langhans, W., Wechsler, B. (2004). The influence of climatic conditions on physiological and behavioural parameters in dairy cows kept in open stables. Animal Science. Vol. 78, pp. 139–147.
57. Dahl, G.E., Tao, S., Laporta, J. (2017). Late gestation heat stress of dairy cattle programs dam and daughter milk production. Journal of Animal Science. Vol. 95, pp. 5701– 5710. DOI:10.2527/jas2017.2006
58. Legrand, A.L., von Keyserlingk, M.A.G., Weary, D.M. (2009). Preference and usage of pasture versus free-stall housing by lactating dairy cattle. Journal of Dairy Science. Vol. 92, pp. 3651–3658. DOI:10.3168/jds.2008-1733
59. De Palo, P., Tateo, A., Zezza F., Corrente, M., Centoducati, P. (2004). Influence of Free-Stall Flooring on Comfort and Hygiene of Dairy Cows during Warm Climatic Conditions. Journal of Dairy Science. Vol. 89(12), pp. 4583– 4595. DOI:10.3168/jds.S0022-0302(06)72508-5
60. Blackshaw, J.K., Blackshaw, A.W. (1994). Heat stress in cattle and the effect of shade on production and behavior: A review. Animal Production Science. Vol. 34, pp. 285–295. DOI:10.1071/ea9940285
61. Kendall, P.E., Nielsen, P.P., Webster, J.R., Verkerk, G.A., Littlejohn, R.P., Matthews, R.L. (2006). The effects of providing shade to lactating dairy cows in a temperate climate. Livestock Science. Vol. 103, pp. 148–157. DOI:10.1016/j. livsci.2006.02.004.
62. Eigenberg, R., Brown-Brandl, T., Nienaber, J., Hahn, G.L. (2005). Dynamic Response Indicators of Heat Stress in Shaded and Non-shaded Feedlot Cattle, Part 2: Predictive Relationships. Biosystem Engineering. Vol. 91(1), pp. 111– 118. DOI:10.1016/j.biosystemseng.2005.02.001
63. Schütz, K.E., Rogers, A.R., Cox, N.R., Webster, J.R., Tucker, C.B. (2011). Dairy cattle prefer shade over sprinklers: effects on behaviour and physiology. Journal of Dairy Science. Vol. 94, pp. 273–283. DOI:10.3168/ jds.2010-3608
64. Tucker, C.B.A., Rogers, A.R., Schütz, K.E. (2008). Effect of solar radiation on dairy cattle behaviour, use of shade and body temperature in a pasture-basedsystem. Applied Animal Behaviour Science. Vol. 109, pp. 141–154. DOI:10.1016/j.applanim.2007.03.015
65. Smith, T.R., Chapa, A., Willard, S., Herndon, C. Jr., Williams, R.J., Crouch, J., Riley, T., Pogue, D. (2006). Evaporative tunnel cooling of dairy cows in the southeast. I: effects on body temperature and respiration rate. Journal of Dairy Science. Vol. 89, pp. 3904–3914. DOI:10.3168/jds. S0022-0302(06)72433-X
66. Khongdee, S., Chaiyabutr, N., Hinch, G., Markvichitr, K., Vajrabukka, C. (2006). Effects of evaporative cooling on reproductive performance and milk production of dairy cows in hot wet conditions. International Journal of Biometeorology. Vol. 50, pp. 253–257. DOI:10.1007/s00484-006-0030-2
67. Broucek, J., Mihina, S., Ryba, S., Tongel, P., Kisac, P., Uhrincat, M., Hanus, A. (2006). Effects of high air temperatures on milk efficiency in dairy cows. Czech Journal of Animal Science. Vol. 51, pp. 93–101.
68. Legrand, A., Schütz, K.E., Tucker, C.B. (2011). Using water to cool cattle: Behavioral and physiological changes associated with voluntary use of cow showers. Journal of Dairy Science. Vol. 94, pp. 3376–3386. DOI:10.3168/jds.2010-3901
69. Angrecka, S., Herbut, P. (2016). Impact of barn orientation on insolation and temperature of stalls surface. Annals of Animal Science. Vol. 16, pp. 887–896. DOI:10.1515/aoas-2015-0096
70. Kendall, P.E., Nielsen, P.P., Webster, J.R., Verkerk, G.A., Littlejohn, R.P., Matthews, R.L. (2006). The effects of providing shade to lactating dairy cows in a temperate climate. Livestock Science. Vol. 103, pp. 148–157. DOI:10.1016/j. livsci.2006.02.004
71. Meyer, M.J., Smith, J.F., Harner, J.P., Shirley, J.E., Titgemeyer, E.C., Brouk, M.J. (2002). Performance of lactating dairy cattle in three different cooling systems. Applied Engineering in Agriculture. Vol. 18, pp. 341–345. DOI:10.13031/2013.8596
72. Her, E., Wolfenson, D., Flamenbaum, I., Folman, Y., Kaim, M., Berman, A. (1988). Thermal, productive and reproductive response of high yielding cows exposed to shortterm cooling in summer. Journal of Dairy Science. Vol. 71, pp. 1085–1092. DOI:10.3168/jds.S0022-0302(88)79656-3
73. Wolfenson, D., Flamenbaum, I., Berman, A. (1988). Hyperthermia and body energy store effects on estrous behavior, conception rate, and corpus luteum function in dairy cows. Journal of Dairy Science. Vol. 71, pp. 3497–3504. DOI:10.3168/jds.S0022-0302(88)79956-7
74. Smith, T.R., Chapa, A., Willard, S., Herndon, C. Jr., Williams, R.J., Crouch, J., Riley, T., Pogue, D. (2006). Evaporative tunnel cooling of dairy cows in the southeast: II: impact on lactation performance. Journal of Dairy Science. Vol. 89, pp. 3915–3923. DOI:10.3168/jds.S0022- 0302(06)72434-1
75. von Keyserlingk, M.A.G., Martin, N.P., Kebreab, E., Knowlton, K.F., Grant, R.J., Stephenson, M., Sniffen, C.J., Harner, J.P., Wright, A.D., Smith, S.I. (2013). Invited review: Sustainability of the US dairy industry. Journal of Dairy Science. Vol. 96, pp. 5405–5425. DOI:10.3168/jds.2012-6354
76. Chen, J.M., Schutz, K.E., Tucker, C.B. (2016). Sprinkler flow rate affects dairy cattle preferences, heat load, and insect deterrence behavior. Applied Animal Behaviour Science. Vol. 182, pp. 1–8. DOI:10.1016/j. applanim.2016.05.023
77. Avendano-Reyes, L., Alvarez-Valenzuela, F.D., Correa-Calderon, A., Saucedo-Quintero, J.S., Robinson, P.H., Fadel, J.G. (2006). Effect of cooling Holstein cows during the dry period on postpartum performance under heat stress conditions. Livestock Science. Vol. 105, pp. 198–206. DOI:10.1016/j.livsci.2006.06.009
78. Bailey T., Sheets J., McClaryD., Smith, S., Bridges A. Heat abatement. – Elanco Dairy Business Unit. 2016. Available at:https://assets.ctfassets.net
79. Wu, W., Zhai, J., Zhang, G., Nielsen, P.V. (2012). Evaluation of methods for determining air exchange rate in a naturally ventilated dairy cattle building with large openings using computational fluid dynamics (CFD). Atmospheric Environment. Vol. 63, pp. 179–188. DOI:10.1016/j. atmosenv.2012.09.042
80. Herbut, P. (2013). Temperature, humidity and air movement variations inside a free-stall barn during heavy frost. Annals of Animal Science. Vol. 13(3), pp. 587–596. DOI:10.2478/aoas-2013-0025
81. Berman, A. (2019). An overview of heat stress relief with global warming in perspective. International Journal of Biometeorology. Vol. 63(4), pp. 493–498. DOI:10.1007/ s00484-019-01680-7
82. Yi, Q., Wang, X., Zhang, G., Li, H., Janke, D., Amon, T. (2019). Assessing effects of wind speed and wind direction on discharge coefficient of sidewall opening in a dairy building model – A numerical study. Computers and Electronics in Agriculture. Vol. 162, pp. 235–245. DOI:10.1016/j.compag.2019.04.016
83. Nusinovici, S., Frössling, J., Widgren, S., Beaudeau, F., Lindberg, A. (2015). Q fever infection in dairy cattle herds: Increased risk with high wind speed and low precipitation. Epidemiology and Infection. Vol. 143(15), pp. 3316–3326. DOI:10.1017/S0950268814003926
84. Rong, L., Liu, D., Pedersen, E.F., Zhang, G. (2015). The effect of wind speed and direction and surrounding maize on hybrid ventilation in a dairy cow building in Denmark. Energy and Buildings. Vol. 86, pp. 25–34. DOI:10.1016/j. enbuild.2014.10.016
85. Borshch, O.O., Borshch, O.V., Sobolev, O.I., Nadtochii, V.M., Slusar, M.V., Gutyj, B.V., Polishchuk, S.A., Malina, V.V., Korol, A.P., Korol-Bezpala, L.P., Bezpalyi, I.F., Cherniavskyi, O.O. (2021). Wind speed in easily assembled premises with different design constructions for side curtains in winter. Ukrainian Journal of Ecology. Vol. 11(1), pp. 325– 328. DOI:10.15421/2021_49
86. Borshch, O.O., Ruban, S.Yu., Gutyj, B.V., Borshch, O.V., Sobolev, O.I., Kosior, L.T., Fedorchenko, M.M., Kirii, A.A., Pivtorak, Y.I., Salamakha,I.Yu., Hordiichuk, N.M., Hordiichuk, L.M., Kamratska, O.I., Denkovich, B.S. (2020). Comfort and cow behavior during periods of intense precipitation. Ukrainian Journal of Ecology. Vol. 10(6), pp. 98–102. DOI:10.15421/2020_265
87. Borshch, A.A., Ruban, S., Borshch, A.V., Babenko, O.I. (2019). Effect of three bedding materials on the microclimate conditions, cows behavior and milk yield. Polish Journal of Natural Sciences. Vol. 34(1), pp. 19–31.
88. Borshch, O.O., Borshch, O.V., Fedorchenko, M.M. (2021). Influence of low temperatures on heat balance in easily assembled premises of different types. Ukrainian Journal of Veterinary and Agricultural Sciences. Vol. 4(2), pp. 27–30. DOI:10.32718/ujvas4-2
Attachment | Size |
---|---|
borshch_2_2021.pdf | 569.73 KB |