You are here

The influence of different selenium forms (selenite, biogenic nanoselenium) in a complex with a probiotic on the metabolic parameters of broiler chickens

Selenium, as an important trace element, is part of selenoproteins with growth-modulating properties and multifactorial mechanisms of action. The biological effects of Se depend on the dose and chemical form in which it enters the body. Selenium nanoparticles have unique characteristics, including small size, large surface area, solubility and multifunctionality. The inclusion of phytonutrient-functionalized nanoparticles in feed is expedient due to solubility, protection against oxidation and enzymatic degradation, increased residence time, and increased bioavailability. Biogenic selenium nanoparticles, obtained by "green" synthesis methods with the participation of microorganisms and plant extracts, are biocompatible and less toxic compared to inorganic selenium compounds. This study was aimed at studying the effect of different forms of selenium in a complex with a probiotic (L. plantarum) on metabolic processes in the body of broiler chickens in order to provide an experimental basis for the effective use of selenium-containing feed additives. A total of 200-day-old broiler chickens of the Cobb 500 cross were divided into four groups by the analog method: K (PC), sodium selenite (0.3 mg Se/kg feed) + probiotic (L. plantarum) (2nd group); biogenic nanoselenium (0.3 mg Se/kg feed + L. plantarum (3rdgroup); nanobioconjugate of selenium with flavonoids of onion peel (0.3 mg Se/kg feed + L. plantarum (group 4). Supplements of selenium and nanoselenium in a complex with a probiotic increased the content of protein in blood serum, in the 3rd and 4th groups this difference was significant (p<0.05). Compared to the control, the activity of alkaline phosphatase increased in all experimental groups, but in broilers of the 4th group, the increase was probable (p<0.05). The content of total lipids, uric acid and activity of aminotransaminases probably did not differ in the experimental groups. The content of creatinine in blood serum and TBC-active products in the liver of birds of the 3rd and 4th groups was lower (p<0.05), but the amount of reduced glutathione (GSH) in the liver tissues was probably higher. It has been established that selenium nanoparticles synthesized with the participation of green technologies are non-toxic, biocompatible, have antioxidant and hepatoprotective properties. The obtained results are an important guideline for the use of nanoselenium conjugates synthesized by the innovative "green" method with flavonoids of onion peel in a complex with a probiotic strain of lactobacilli (L. Plantarum) as a functional feed additive to improve the metabolic processes of the broiler body and can be included in the composition feed additives for poultry.

Key words: nanotechnology, selenium nanoparticles, "green" synthesis, quercetin, onion peel, broilers, blood, liver, biochemical indicators.

  1. Vlizlo, V. V., Fedoruk, R. S., Ratych, I. B. (2012). Laboratorni metody doslidzhen u biolohii, tvarynnytstvi ta veterynarnii medytsyni: dovidnyk [Laboratory research methods in biology, animal husbandry and veterinary medicine: a handbook]. Lviv: Spolom, 764 p. (In Ukrainian).
  2. Kononenko, V. K., Ibatullin, I. I., Patrov, V. S. (2000). Praktykum zosnovna ukovykh doslidzhen u tvarynnytstvi [Workshop on the basics of scientific research in animal husbandry]. Kyiv, 96 p. (In Ukrainian).
  3. Cehmistrenko, O.S., Bitjuc'kyj, V.S., Cehmistrenko, S.I. (2019). Vykorystannja nanochastynok metaliv ta nemetaliv u ptahivnyctvi [The use of nanoparticles of metals and non-metals in poultry farming]. Tehnologija vyrobnyctva i pererobky produkcii' tvarynnyctva: zb. nauk. prac' [Technology of production and processing of livestock products: coll. of science works]. 2, pp. 113–130. (in Ukraine). DOI:10.33245/2310-9289-2019-150-2-113-130
  4. Abdullah, H.S.T.S.H., Asseri, S.N.A.R.M., Mohamad, W.N.K.W., Kan, S.Y., Azmi, A.A., Julius, F.S.Y., Chia, P.W. (2021). Green synthesis, characterization and applications of silver nanoparticle mediated by the aqueous extract of red onion peel. Environmental Pollution, 271, 116295 p. DOI:10.1016/j. envpol.2020.116295.
  5. Abid, M. A., Abid, D. A., Aziz, W. J., Rashid, T. M. (2021). Iron oxide nanoparticles synthesized using garlic and onion peel extracts rapidly degrade methylene blue dye. Physica B: Condensed Matter, 622, 413277 p. DOI:10.1016/j.physb.2021.413277.
  6. Ahmadi, M., Ahmadian, A., Seidavi, A.R. (2018). Effect of different levels of nano-selenium on performance, blood parameters, immunity and carcass characteristics of broilerchickens. Poultry Science Journal, 6(1), pp. 99–108. DOI:10.22069/ psj.2018.13815.1276.
  7. Al-Brakati, A., Alsharif, K.F., Alzahrani, K. J., Kabrah, S., Al-Amer, O., Oyouni, A. A., Abdel Moneim, A.E. (2021). Using green biosynthesized lycopene-coated selenium nanoparticles to rescue renal damage in glycerol-induced acute kidney injury in rats. International journal of nanomedicine, pp. 4335–4349.
  8. Al-Kahtani, M., Morsy, K. (2019). Ameliorative effect of selenium nanoparticles against aluminum chloride-induced hepatorenal toxicity in rats. Environmental Science and Pollution Research, 26(31), pp. 32189–32197. DOI:10.1007/s11356-019-06417-y.
  9. Attia, Y. A., Al-Harthi, M. A. (2015). Nigella seed oil as an alternative to antibiotic growth promoters for broiler chickens. Eur. Poult. Sci. 79, pp. 1612–9199. DOI:10.1399/eps. 2015.80.
  10. Averill-Bates, D. A. (2023). The antioxidant glutathione. Vitamins and Hormones, 121, pp. 109–141. DOI:10.1016/bs.vh.2022.09.002
  11. Awad, E. A., Zulkifli, I., Soleimani, A. F., Aljuobori, A. (2017). Effects of feeding male and female broiler chickens on low-protein diets fortified with different dietary glycine levels under the hot and humid tropical climate. Ital. J. Anim. Sci., 16, pp. 453–461. DOI:10.1080/ 1828051X.2017.1291288.
  12. Bisht, N., Phalswal, P., Khanna, P. K. (2022). Selenium nanoparticles: A review on synthesis and biomedical applications. Materials Advances, 3(3), pp. 1415–1431. DOI:10.1039/ D1MA00639H.
  13. Biswas, K. C., Barton, L. L., Tsui, W. L., Shuman, K., Gillespie, J., Eze, C. S. (2011). A novel method for the measurement of elemental selenium produced by bacterial reduction of selenite. J. Microbiol. Methods, 86, pp. 140–144. DOI:10.1016/j.mimet.2011.04.009.
  14. Bityutskyy, V. S., Tsekhmistrenko, S. I., Tsekhmistrenko, O. S., Oleshko, O. A., Heiko, L. М. (2020). Influence of selenium on redox processes, selenoprotein metabolism and antioxidant status of aquaculture facilities. Taurian Scientific Bulletin, 114, pp. 231–240. DOI:10.32851/2226-0099.2020.114.28 (In Ukrainian).
  15. Chaudhari, G. R., Kaul, L. (1996). Effect of castor meal feeding on serum and uric acid concentration in white Leghorn cockerels. Ind. J. Environ. Toxicol., 1, pp. 45–47.
  16. Dahle, L. K., Hill, E. G., Holman, R. T. (1962). The thiobarbituric acid reaction and the autoxidations of polyunsaturated fatty acid methyl esters. Archives of biochemistry and biophysics, 98(2), pp. 253–261.
  17. Demchenko, A., Bityutskyy, V., Tsekhmistrenko, S., Tsekhmistrenko, O., Kharchyshyn, V. (2022). Synthesis of functionalized selenium nanoparticles with the participation of flavonoids. Multidisciplinary academic notes. Theory, methodology and practice. In Proceedings of the ХVII International Scientific and Practical Conference. Tokyo, Japan, pp. 29–35.
  18. Donsbough, A. L., Powell, S., Waguespack, A., Bidner, T. D., Southern, L. L. (2010). Uric acid, urea, and ammonia concentrations in serum and uric acid concentration in excreta as indicators of amino acid utilization in diets for broilers. Poultry Science, 89(2), pp. 287–294. DOI:10.3382/ps.2009-00401.
  19. Ellman, G.L. (1959). Tissue sulfhydryl groups. Archives of biochemistry and biophysics, 82(1), pp. 70–77.
  20. Griffin, B. R., Faubel, S., Edelstein, C. L. (2019). Biomarkers of drug-induced kidney toxicity. Therapeutic drugmonitoring, 41(2), 213 p. DOI:10.1097/FTD.0000000000000589.
  21. Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Peng, Q., Kizek, R. (2018). Nano-selenium and its nanomedicine applications: a critical review. International journal of nanomedicine, pp. 2107–2128. DOI:10.2147/IJN.S157541.
  22. Iranifam, M., Fathinia, M., Rad, T. S., Hanifehpour, Y., Khataee, A. R., Joo, S. W. (2013). A novel selenium nanoparticles-enhanced chemiluminescence system for determination of dinitrobutylphenol. Talanta, 107, pp. 263–269. DOI:10.1016/j.talanta.2012.12.043.
  23. Kind, P. R. N., King, E. J. (1954). Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. Journal of clinical Pathology, 7(4), 322 p.
  24. Lau, A. T., Tan, H. W., Xu, Y. M. (2017). Epigenetic effects of dietary trace elements. Curr. Pharmacol. Rep. 3, pp. 232–241. DOI:10.1007/s40495-017- 0098-x.
  25. Law, F. L., Zulkifli, I., Soleimani, A. F., Liang, J. B., Awad, E. A. (2018). The effects of low-protein diets and protease supplementation on broiler chickens in a hot and humid tropical environment. Asian-Australas. J. Anim. Sci., 31, pp. 1291–1300. DOI:10.5713/ ajas.17.0581.
  26. Lenz, M., Lens, P. N. (2009). The essential toxin: The changing perception of selenium in environmental sciences. Sci. Total Environ., 407, pp. 3620– 3633. DOI:10.1016/j. scitotenv.2008.07.056.
  27. Li, D.-B., Cheng, Y.-Y., Wu, C., Li, W.-W., Li, N., Yang, Z.-C., Tong, Z.-H., Yu, H.-Q. (2014). Selenite reduction by Shewanellaonei densis MR-1 is mediated by fumarate reductase in periplasm. Sci. Rep. 4, 3735 p. DOI:10.1038/srep03735.
  28. Lowry, O. H., Rosenbrough, N. I., Farr, A. R. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193(1), pp. 265-275.
  29. Maiyo, F., Singh, M. (2017). Selenium nanoparticles: Potential in cancer gene and drug delivery. Nanomedicine, 12, pp. 1075–1089. DOI:10.2217/ nnm-2017-0024.
  30. Nabavi, S. M., Silva, A. S. (Eds.). (2022). Antioxidants Effects in Health: The Bright and the Dark Side. Academic Press.
  31. Phukan, K., Devi, R., Chowdhury, D. (2021). Green synthesis of gold nano-bioconjugates from onion peel extract and evaluation of their antioxidant, anti-inflammatory, and cytotoxic studies. ACS omega, 6(28), pp. 17811–17823. DOI:10.1021/acsomega.1c00861.
  32. Reitman, S., Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American journal of clinical pathology, 28(1), pp. 56–63.
  33. Salunke, G. R., Ghosh, S., Santosh Kumar, R. J., Khade, S., Vashisth, P., Kale, T., Chopade, B. A. (2014). Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. International journal of nanomedicine, pp. 2635–2653. DOI:10.2147/IJN. S59834.
  34. Santhosh, A., Theertha, V., Prakash, P., Chandran, S.S. (2021). From waste to a value added product: Green synthesis of silver nanoparticles from onion peels together with its diverse applications. Materials Today: Proceedings, 46, pp. 4460–4463. DOI:10.1016/j. matpr.2020.09.680.
  35. Scope, A., Schwendenwein, I. (2020). Laboratory evaluation of renal function in birds. Veterinary Clinics: Exotic Animal Practice, 23(1), pp. 47–58.
  36. Siller, W.G. (1981). Renal Pathology of the Fowl. A Review. Avian Pathology, 10, pp. 187–262. DOI:10.1080/03079458108418474.
  37. Torres, S. K.; Campos, V. L.; León, C. G.; Rodríguez-Llamazares, S. M.; Rojas, S. M.; Gonzalez, M.; Smith, C.; Mondaca, M. A. (2012). Biosynthesis of seleniumnanoparticles by Pantoea agglomerans and their antioxidant activity. J. Nanoparticle Res., 14, 1236 p. DOI:10.1007/s11051-012-1236-3.
  38. Tóth, R. J., Csapó, J. (2018). The role of selenium in nutrition–A review. Acta Univ. Sapientiae Aliment. 11, pp. 128–144. DOI:10.2478/ausal-2018-0008.
  39. Tsekhmistrenko, S. I., Bityutskyy, V. S., Tsekhmistrenko, O. S. (2020). Markers of oxidative stress in the blood of quails under the influence of selenium nanoparticles. In Impact of modernity on science and practice. Abstracts of XVIII International Scientific and Practical Conference. Boston, USA, pp. 177–180.
  40. Tsekhmistrenko, S. I., Bityutskyy, V. S., Tsekhmistrenko, O. S., Kharchishin, V. M., Tymoshok, N. O., Demchenko, A. A., Tokarchuk, T. S. (2021). Ecological and toxicological characteristics of selenium nanocompounds. Ukrainian Journal of Ecology, 11(3), pp. 199–204. DOI:10.15421/2021_163.
  41. Tsekhmistrenko, S., Bityutskyy, V., Tsekhmistrenko, O., Merzlo, S., Tymoshok, N., Melnichenko, A., Yakymenko, I. (2021). Bionanotechnologies: synthesis of metals’ nanoparticles with using plants and their applications in the food industry: A review. Journal of microbiology, biotechnology and food sciences, 10(6), 1513 p. DOI:10.15414/jmbfs.1513.
  42. Ullah, A., Mu, J., Wang, F., Chan, M. W. H., Yin, X., Liao, Y., Kazmi, M. R. (2022). Biogenic Selenium Nanoparticles and Their Anticancer Effects Pertaining to Probiotic Bacteria – A Review. Antioxidants, 11(10), 1916 p. DOI:10.3390/antiox11101916.
  43. Van Overschelde, O., Guisbiers, G., Snyders, R. (2013). Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water. APL Mater., 1, 042114. DOI:10.1063/1.4824148.
  44. Wadhwani, S. A., Shedbalkar, U. U., Singh, R., Chopade, B. A. (2016). Biogenic selenium nanoparticles: Current status and future prospects. Appl. Microbiol. Biotechnol., 100, pp. 2555–2566. DOI:10.1007/ s00253-016-7300-7.
  45. Wang, B., Wang, S., Ding, M., Lu, H., Wu, H., Li, Y. (2022). Quercetin regulates calcium and phosphorus metabolism through the Wnt signaling pathway in broilers. Frontiers in Veterinary Science, 8, 1670 p. DOI:10.3389/fvets.2021.786519.
  46. Wang, H., Zhang, J., Yu, H. (2007). Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: Comparison with selenomethionine in mice. Free Radic. Biol. Med., 42, pp. 1524–1533. DOI:10.1016/j. freeradbiomed.2007.02.013.
  47. Wang, W.-W., Wang, J., Wu, S.-G., Zhang, H.-J., Qi, G.H. (2020). Response of broilers to gradual dietary protein reduction with or without an adequate glycine plus serine level. Ital. J. Anim. Sci., 19, pp. 127–136. DOI:10.1080/1828051X.2019.1704634.
  48. Zambonino, M. C., Quizhpe, E. M., Mouheb, L., Rahman, A., Agathos, S. N., Dahoumane, S. A. (2023). Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportuni ties and Emerging Challenges in Theranostic Nanomedicine. Nanomaterials, 13(3), 424 p. DOI:10.3390/ nano13030424.
  49. Zerin, T., Kim, Y. S., Hong, S. Y., Song, H. Y. (2013). Quercetin reduces oxidative damage induced by paraquat via modulating expression of antioxidant genes in A549 cells. Journal of Applied Toxicology, 33(12), pp. 1460–1467. DOI:10.1002/jat.2812.
  50. Zhang, Y. N., Wang, S., Deng, Y. Z., Huang, X. B., Li, K. C., Chen, W., Zheng, C. T. (2021). The application of reduced dietary crude protein levels supplemented with additional amino acids in laying ducks. Poultry Science, 100(4), 100983 p. DOI:10.1016/j. psj.2021.01.006.
AttachmentSize
PDF icon demchenko_1_2023.pdf573.34 KB