You are here

Environmental problems of industrial and organic poultry farming

Poultry farming, using modern intensive farming methods, is one of the most efficient livestock industries that ensures food security for a large part of the world’s population. In the context of industrial poultry farming, the largest share of global production (up to 98 % of meat and 92 % of eggs) is accounted for by broiler chickens (to a lesser extent, turkeys, ducks, geese, etc.), as well as by food eggs obtained from modern egg crosses of chickens. The global poultry production is estimated at 137.8 million tons and 86.3 million metric tons of eggs in 2021, with steady growth every year. Taking into account the wishes of consumers, European countries are increasingly switching to the production of organic poultry products, believing that this way they can best meet consumer requirements based on three main dimensions of quality assessment: 1) the safety of poultry housing; 2) the safety of organic products for human health; 3) the safety of organic production for the environment. Improvement of poultry housing conditions is aimed at using extensive production systems, such as organic systems, free-range systems with lower stocking densities. Such systems are becoming increasingly popular, especially in the European Union, and are aimed at improving farming conditions and poultry welfare, reducing environmental impact and increasing the sustainability of the industry. However, both intensive farming methods in industrial and organic poultry production lead to significant impacts on human health and the environment. Wastes such as poultry manure and used litter are associated with ammonia, nitrogen oxide and methane emissions that contribute to global greenhouse gas emissions and pose a serious threat to the environment and human health. Poultry waste can contain pesticide residues, pathogens, pharmaceuticals (antibiotics), hormones, metals, macronutrients (in the wrong proportions) and other pollutants that can lead to air, soil and water pollution, as well as the formation of multidrug-resistant strains. The analysis shows that industrial poultry farming can be more controlled than organic farming in terms of environmental safety.

Key words: industrial and organic poultry farming, environmental conditions, environmental safety, air, soil, water pollution, pollutants.

  1. Acharya, K., Acharya, N. (2017). Alternatives to fight against coccidiosis: A review. Nepalese Vet. J., 34, pp. 152–167. DOI:10.3126/nvj. v34i0.22918 (с.153).
  2. Akhtar, U. S., Rastogi, N., McWhinney, R. D., Urch, B., Chow, C.-W., Evans, G. J., Scott, J. A. (2014). The combined effects of physicochemical properties of size-fractionated ambient particulate matter on in vitro toxicity in human A549 lung epithelial cells. Toxicol. Rep. 1, pp. 145–156. DOI:10.1016/j. toxrep.2014.05.002.
  3. Anderson, K., Moore, P. A., Martin, J., Ashworth, A.J. (2021). Evaluation of a novel poultry litter amendment on greenhouse gas emissions. Atmosphere, 12, 563 p. DOI:10.3390/atmos12050563.
  4. Antonious, G. F. (2018). Biochar and animal manure impact on soil, crop yield and quality. In: Aladjadjiyan, A. (Ed.), Agricultural Waste And Residues. InTech, London, UK.
  5. Augustyńska-Prejsnar, A., Ormian, M., Sokołowicz, Z., Topczewska, J., Lechowska, J. (2018). Environmental impacts of pig and poultry farms (in Polish). Proc. ECOpole, 12, pp. 107–115. DOI:10.2429/ proc.2018.12(1)011.
  6. Awad, A. H. A., Elmorsy, T. H., Tarwater, P. M., Green, C.F., Gibbs, S.G. (2010). Air biocontamination in a variety of agricultural industry environments in Egypt: a pilot study. Aerobiologia, 26, pp. 223–232. DOI:10.1007/s10453-010-9158-y.
  7. Bande, F., Arshad, S. S., Omar, A. R., Bejo, M. H., Abubakar, M. S., Abba, Y. (2016). Pathogenesis and diagnostic approaches of avian infectious bronchitis. Adv. Virol. 4621659. DOI:10.1155/2016/4621659.
  8. Baskin-Graves, L., Mullen, H., Aber, A., Sinisterra, J., Ayub, K., Amaya-Fuentes, R., Wilson, S. (2019). Rapid health impact assessment of a proposed poultry processing plant in Millsboro, Delaware. Int. J. Environ. Res. Public Health, 16, 3429 p. DOI:10.3390/ ijerph16183429.
  9. Biennial report on world food markets, June 2022 - Food Outlook. Available at:https://reliefweb.int/ reort/world/food-outlook-biannual-report-global-foodmarkets -june-2022?gclid=Cj0KCQiAjbagBhD3ARIs ANRrqEuWxsWPW5f7D_ccK5GJWq J625MVTDZKm21NzSgzumLYJsf Qdb64cEaAiuc EALw wcB.
  10. Bijay, S., Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Appl. Sci., 3, 518 p. DOI:10.1007/s42452-021-04521-8.
  11. Biogas and biomethane should replace natural gas imports - President of MHP Eco Energy. Available at:https://interfax.com.ua/ news/greendeal/ 768550. html. (in Ukrainian).
  12. Blaak, H., Van Hoek, A. H. A. M., Hamidjaja, R. A., Van der Plaats, R. Q. J., Kerkhof-de Heer, L., De Roda Husman, A. M., Schets, F. M. (2015). Distribution, numbers, and diversity of ESBLproducing E. coli in the poultry farm environment. PLoS One, 10 p. DOI:10.1371/journal.pone.0135402 e0135402-e0135402.
  13. Blake, D. P., Clark E. L., Macdonald S. E., Thenmozhi V., Kundu K., Garg R., Jatau I. D., Ayoade S., Kawahara F., and Moftah A.. (2015). Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development. Proc. Natl. Acad. Sci., 112, pp. 5343– 5350. DOI:10.1073/ pnas.1506468112.
  14. Blanes-Vidal, V., Bælum, J., Schwartz, J., Løfstrøm, P., Christensen, L.P. (2014). Respiratory and sensory irritation symptoms among residents exposed to low-to-moderate air pollution from biodegradable wastes. J. Expo. Sci. Environ. Epidemiol., 24, pp. 388– 397. DOI:10.1038/jes.2014.20.
  15. Bródka, K., Kozajda, A., Buczyńska, A., Szadkowska-Stańczyk, I. (2012). The variability of bacterial aerosol in poultry houses depending on selected factors. Int. J. Occup. Med. Environ. Health, 25, pp. 281–293. DOI:10.2478/s13382-012-0032-8.
  16. Cabañes, F. J. (2021). Aspergillosis, poultry farming and antifungal resistance. Rev. Iberoam. Micol. 38, pp. 109–110. DOI:10.1016/j.riam.2020.03.004.
  17. Countries leading in egg production in the world in 2021. Available at:https://www.statista.com/statistics/263972/egg-production-worldwide-sinc... #:~:text=The%20production%20volume%20of%20 eggs,increased% 20by%20over % 20100%20percent.
  18. Conventional and organic eggs of big brands. Available at: marketplace-egg-test-1.5971608.
  19. CDDEP. (2021). The State of the World’s Antibiotics 2021 - A Global Analysis of Antimicrobial Resistance And Its Drivers Washington DC, USA.
  20. Cesoniene, L., Dapkiene, M., Sileikiene, D. (2019). The impact of livestock farming activity on the quality of surface water. Environ. Sci. Pollut. Res. 26, pp. 32678–32686. DOI:10.1007/s11356-018-3694-3.
  21. Charuaud, L., Jardé, E., Jaffrézic, A., Liotaud, M., Goyat, Q., Mercier, F., Le Bot, B. (2019). Veterinary pharmaceutical residues in water resources and tap water in an intensive husbandry area in France. Sci. Total Environ. 664, pp. 605–615. DOI:10.1016/j. scitotenv.2019.01.303.
  22. Chinivasagam, H. N., Tran, T., Maddock, L., Gale, A., Blackall, P. J. (2009). Mechanically ventilated broiler sheds: a possible source of aerosolized Salmonella, Campylobacter, and Escherichia coli. Appl. Environ. Microbiol. 75, pp. 7417–7425. DOI:10.1128/ aem.01380-09.
  23. Dai, P., Shen, D., Tang, Q., Huang, K., Li, C. (2020). PM2.5 from a broiler breeding production system: the characteristics and microbial community analysis. Environ. Pollut. 256, 113368 p. DOI:10.1016/j. envpol.2019.113368.
  24. Del Bosco, A., Mattioli, S., Cartoni-Mancinelli, A., Cotozzolo, E., Castellini, C. (2021). Extensive rearing systems in poultry production: the right chicken for the right farming system. A review of twenty years of scientific research in Perugia University, Italy. Animals, 11 p. DOI:10.3390/ani11051281.
  25. De Rooij, M. M. T., Hoek, G., Schmitt, H., Janse, I., Swart, A., Maassen, C.B.M., Schalk, M., Heederik, D.J.J., Wouters, I.M. (2019a). Insights into livestockrelated microbial concentrations in air at residential level in a livestock dense area. Environ. Sci. Technol. 53, pp. 7746–7758. DOI:10.1021/acs.est.8b07029.
  26. De Rooij, M. M.T., Smit, L. A. M., Erbrink, H. J., Hagenaars, T.J., Hoek, G., Ogink, N. W. M., Winkeld, A., Heederik, D. J. J., Wouters, I. M. (2019b). Endotoxin and particulate matter emitted by livestock farms and respiratory health effects in neighboring residents. Environ. Int. 132, 105009 p. DOI:10.1016/j. envint.2019. 105009.
  27. De Vries, M., De Boer, I. J. M. (2010). Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest. Sci. 128, pp. 1–11. 2009.11.007.
  28. Dunlop, M. W., Blackall, P. J., Stuetz, R. M. (2016). Odour emissions from poultry litter – a review litter properties, odour formation and odorant emissions from porous materials. J. Environ. Manag., 177, pp. 306–319. DOI:10.1016/j.jenvman. 2016.04.009.
  29. Dróżdż, D., Wystalska, K., Malińska, K., Grosser, A., Grobelak, A., Kacprzak, M. (2020). Management of poultry manure in Poland – current state and future perspectives. J. Environ. Manag., 264, 110327 p. DOI:10.1016/j.jenvman. 2020.110327.
  30. EMA, 2021b. Sales of veterinary antimicrobial agents in 31 European countries in 2019 and 2020 - trends from 2010 to 2020. DOI:10.2809/636389.
  31. EPRS (2019). The EU Poultry Meat And Egg Sector: Main Features, Challenges And Prospects: In-depth Analysis. European Parliamentary Research Service, Brussels, Belgium.
  32. EC. (2008). Commission Regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. Available at:http://data.europa. eu/eli/reg/ 2008/889/oj.
  33. EC. (2009). Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 laying down health rules as regards animal by-products and derived products not intended for human consumption and repealing Regulation (EC) No 1774/2002 (Animal by-products Regulation). Available at: 2009/1069/oj.
  34. Environmental safety as an important principle of Mironivska Poultry Farm. Available at:https://dzvin. media/news/ekologichna-bezpeka-yak-vazhliviy-printsip-roboti-mironivskoyi-ptahofabriki/. (in Ukrainian).
  35. FAO. (2022). Food Outlook – Biannual Report on Global Food Markets. Rome, Italy. DOI:10.4060/ cb9427en.
  36. Fertilizers: types and features of organic and mineral fertilizers. Available at:https://bizontech.ua/ blog/fertilizers-features-of-application-organic-mineral. (in Ukrainian).
  37. Friese, A., Schulz, J., Zimmermann, K., Tenhagen, B.A., Fetsch, A., Hartung, J., Rösler, U. (2013). Occurrence of livestock-associated methicillin-resistant Staphylococcus aureus in Turkey and broiler barns and contamination of air and soil surfaces in theirvicinity. Appl. Environ. Microbiol., 79, pp. 2759–2766. DOI:10.1128/AEM.03939-12.
  38. Germanwatch. (2020). Chicken Meat Tested for Resistance to Critically Important Antimicrobials for Human Medicine Washington DC, USA.
  39. Guo, L., Zhao, B., Jia, Y., He, F., Chen,W. (2022). Mitigation strategies of air pollutants for mechanical ventilated livestock and poultry housing - a review. Atmosphere, 13, 452 p. DOI:10.3390/atmos13030452.
  40. Gladding, T. L., Rolph, C. A., Gwyther, C. L., Kinnersley, R., Walsh, K., Tyrrel, S. (2020). Concentration and composition of bioaerosol emissions from intensive farms: pig and poultry livestock. J. Environ. Manag., 272, 111052 p. DOI:10.1016/j. jenvman.2020.111052.
  41. Górny, R. L. (2020b). Szkodliwe czynniki biologiczne (in Polish). In: M. J., P. (Ed.), Czynniki szkodliwe w środowisku pracy - wartości dopuszczalne, 12. Ed Wydawnictwo Centralnego Instytutu Ochrony Pracy-PIB, Warsaw, Poland, pp. 157–168.
  42. Graham, J. P., Evans, S. L., Price, L. B., Silbergeld, E. K. (2009). Fate of antimicrobialresistant enterococci and staphylococci and resistance determinants in stored poultry litter. Environ. Res. 109, pp. 682–689. DOI:10.1016/j.envres.2009. 05.005.
  43. Hardin, B. D., Kelman, B. J., Saxon, A. (2003). Adverse human health effects associated with molds in the indoor environment. J. Occup. Environ. Med., 45, pp. 470–478. DOI:10.1097/00043764-200305000- 00006.
  44. Hoover, N. L., Law, J. Y., Long, L. A. M., Kanwar, R. S., Soupir, M. L. (2019). Long-term impact of poultry manure on crop yield, soil and water quality, and crop revenue. J. Environ. Manag., 252, 109582 p. DOI:10.1016/j.jenvman.2019.109582.
  45. Jammoul, A., El Darra, N. (2019). Evaluation of antibiotics residues in chicken meat samples in Lebanon. Antibiotics, 8, 69 p. DOI:10.3390/ antibiotics8020 069.
  46. Kaygisiz, F., Bilge, A. B., Bulut, D. (2019). Determining Factors Affecting Consumers Decision to Purchase Organic Chicken Meat. Brazilian Journal of Poultry Science, Vol. 21, no. 4, pp. 1–8. DOI:10.1590/1806-9061-2019-1060.
  47. Kouimintzis, D., Chatzis, C., Linos, A. (2007). Health effects of livestock farming in Europe. J. Public Health, 15, pp. 245–254. DOI:10.1007/s10389-007- 0130-4.
  48. Kreidenweis, U., Breier, J., Herrmann, C., Libra, J., Prochnow, A. (2021). Greenhouse gas emissions from broiler manure treatment options are lowest in well-managed biogas production. J. Clean. Prod., 280, 124969 p. DOI:10.1016/j.jclepro. 2020.124969.
  49. Kyakuwaire, M., Olupot, G., Amoding, A., Peter, N.-K., Basamba, T.A. (2019). How safe is chicken litter for land application as an organic fertilizer? A review. Int. J. Environ. Res. Public Health, 16 p. DOI:10.3390/ijerph16193521.
  50. Li, J., Chen, Q., Li, H., Li, S., Liu, Y., Yang, L., Han, X. (2020). Impacts of different sources of animal manures on dissemination of human pathogenic bacteria in agricultural soils. Environ. Pollut. 266, 115399 p. DOI:10.1016/j.envpol.2020. 115399.
  51. Mulder, A.C., Franz, E., de Rijk, S., Versluis, M.A.J., Coipan, C., Buij, R., Müskens, G., Koene, M., Pijnacker, R., Duim, B., Bloois, L.v.d.G.-V., Veldman, K., Wagenaar, J.A., Zomer, A.L., Schets, F.M., Blaak, H., Mughini-Gras, L. (2020). Tracing the animal sources of surface water contamination with Campylobacter jejuni and Campylobacter coli. Water Res. 187, 116421 p. DOI:10.1016/j.watres.2020.116 421.
  52. Mottet, A., Tempio, G. (2017). Global poultry production: current state and future outlook and challenges. World’s Poul. Sci. J., 73, pp. 245–256. DOI:10.1017/ S0043933917000071.
  53. Naseem, S., King, A.J. (2018). Ammonia production in poultry houses can affect health of humans, birds, and the environment—techniques for its reduction during poultry production. Environ. Sci. Pollut. Res. 25, pp. 15269–15293. DOI:10. 1007/s11356-018- 2018-y.
  54. Nordquist, R. E., Van der Staay F. J., Van Eerdenburg F. J., Velkers F. C., Fijn L., Arndt, S. S. (2017). Mutilating procedures, management practices, and housing conditions that may affect the welfare of farm animals: implications for welfare research. Animals, 7, 12 p. DOI:10.3390/ani7020012.
  55. Nowak, A., Matusiak, K., Borowski, S., Bakuła, T., Opaliński, S., Kołacz, R., Gutarowska, B. (2016). Cytotoxicity of odorous compounds frompoultry manure. Int. J. Environ. Res. Public Health, 13, 1046 p. DOI:10.3390/ijerph13111046.
  56. On approval of the Procedure (detailed rules) for organic production and circulation of organic products. Available at:https://zakon.rada.gov.ua/laws/show/ 970-2019-%D0%BF#Text. (in Ukrainian)
  57. Ortúzar, M., Esterhuizen, M., Olicón-Hernández, D.R., González-López, J., Aranda, E. (2022). Pharmaceutical pollution in aquatic environments: a concise review of environmental impacts and bioremediation systems. Front. Microbiol. 13 p. .2022.869332.
  58. Parisi, M., J. Northcutt, D. Smith, E. Steinberg, and P. Dawson. (2015). Microbiological contamination of shell eggs produced in conventional and freerange housing systems. Food Control. 47. pp. 161–165. DOI:10.1016/j.foodcont.2014. 06.038.
  59. Paudel, S., Fink, D., Abdelhamid, M. K., Zöggeler, A., Liebhart, D., Hess, M., Hess, C. (2021). Aerosol is the optimal route of respiratory tract infection to induce pathological lesions of colibacillosis by a luxtagged avian pathogenic Escherichia coli in chickens. Avian Pathol. 50, pp. 417–426. DOI:10.1080/0307 9457.2021.1978392.
  60. Paul, V., Vattikuti, S., Dash, P., Arslan, Z. (2021). Evaluating hydrogeochemical characteristics of groundwater and surface water in the Upper Pearl River Watershed, USA. Environ. Monit. Assess. 193, 296 p. DOI:10.1007/ s10661-021-09045-7.
  61. Parente, C. E. T., Oliveira da Silva, E., Sales Júnior, S. F., Hauser-Davis, R. A., Malm, O., Correia, F. V., Saggioro, E. M. (2021). Fluoroquinolone-contaminated poultry litter strongly affects earthworms as verified through lethal and sub-lethal evaluations. Ecotoxicol. Environ. Saf. 207, 111305 p. DOI:10.1016/j. ecoenv.2020.111305.
  62. Plewa, K., Lonc, E. (2011). Analysis of airborne contamination with bacteria and moulds in poultry farming: a case study. Pol. J. Environ. Stud., 20, pp. 725–731.
  63. Pohl, H. R., Citra, M., Abadin, H. A., Szadkowska-Stańczyk, I., Kozajda, A., Ingerman, L., Nguyen, A., Murray, H. E. (2017). Modeling emissions from CAFO poultry farms in Poland and evaluating potential risk to surrounding populations. Regul. Toxicol. Pharmacol. 84, pp. 18–25. DOI:10.1016/j.yrtph.2016.11.005.
  64. Rayne, N., Aula, L. (2020). Livestock manure and the impacts on soil health: a review. Soil Syst. 4, 64 p. DOI:10.3390/soilsystems4040064.
  65. Ricke, S. C., M. Rothrock, Jr. J. (2020). Gastrointestinal microbiomes of broilers and layer hens in alternative production systems. Poult. Sci. 99, pp. 660– 669. DOI:10.1016/j.psj.2019.12.017.
  66. Ritz, C. W., Merka, W. C. (2013). Maximizing Poultry Manure Use Through Nutrient Management Planning. Bulletin 1245. The University of Georgia and Fort Valley State University.
  67. Rylander, R., Carvalheiro, M. F. (2006). Airways inflammation among workers in poultry houses. Int. Arch. Occup. Environ. Health. 79, pp. 487–490. s00420-005-0072-5.
  68. Rzeźnik,W., Mielcarek-Bocheńska, P., 2022. Odour emissions from livestock buildings. Atmosphere. 13, 254 p. DOI:10.3390/atmos13020254.
  69. Saharan, V. V., Verma, P., Singh, A. P. (2020). High prevalence of antimicrobial resistance in Escherichia coli, Salmonella spp. and Staphylococcus aureus isolated from fish samples in India. Aquac. Res. 51, pp. 1200–1210. DOI:10.1111/are.14471.
  70. Sanseverino, I., Navarro Cuenca, A., Loos, R., Marinov, D., Lettieri, T. (2018). State of the art on the contribution of water to antimicrobial resistance. Publications Office of the European Union, Luxembourg. DOI:10.2760/82376.
  71. Sengeløv, G., Halling-Sørensen, B., Aarestrup, F.M. (2003). Susceptibility of Escherichia coli and Enterococcus faecium isolated from pigs and broiler chickens to tetracycline degradation products and distribution of tetracycline resistance determinants in E. coli from food animals. Vet. Microbiol. 95, pp. 91–101. DOI:10.1016/S0378-1135(03)00123-8.
  72. Shen, D., Wu, S., Dai, P.-Y., Li, Y.-S., Li, C.-M. (2018). Distribution of particulate matter and ammonia and physicochemical properties of fine particulate matter in a layer house. Poult. Sci. 97, pp. 4137–4149. DOI:10.3382/ps/pey285.
  73. Sim, W.-J., Lee, J.-W., Lee, E.-S., Shin, S.- K., Hwang, S.-R., Oh, J.-E. (2011). Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere. 82, pp. 179–186. DOI:10.1016/j.chemosphere.2010.10.026.
  74. Singh, M., Cowieson, A. (2013). Range use and pasture consumption in free-range poultry production. Anim. Prod. Sci. 53, pp. 1202–1208. DOI:10.1071/an 13199.
  75. Smit, L. A. M., Boender, G. J., de Steenhuijsen Piters, W. A. A., Hagenaars, T. J., Huijskens, E. G. W., Rossen, J. W. A., Koopmans, M., Nodelijk, G., Sanders, E. A. M., Yzermans, J., Bogaert, D., Heederik, D. (2017). Increased risk of pneumonia in residents living near poultry farms: does the upper respiratory tract microbiota play a role? Pneumonia. 9 p. DOI:10.1186/ s41479-017-0027-0.
  76. State of World Population 2023: 8 Billion Lives, Infinite Possibilities The world’s population. Available at:https://reliefweb.int/report/world/stateworld-population-2023-8-billion-...
  77. Strohmaier, C., Krommweh, M. S., Büscher, W. (2020). Suitability of different filling materials for a biofilter at a broiler fattening facility in terms of ammonia and odour reduction. Atmosphere. 11, 13 p. DOI:10.3390/atmos11010013.
  78. The Law of Ukraine on Basic Principles and Requirements for Organic Production, Circulation and Labeling of Organic Products. Available at:https:// zakon.rada.gov.ua/laws/show/2496-19#Text. (in Ukrainian).
  79. The world’s population has reached 8 billion people - UN. Available at: https://www.pravda.com.ua/ news/2022/11/15/7376404/
  80. Uyeki, T. M., Peiris, M. (2019). Novel avian influenza A virus infections of humans. Infect. Dis. Clin. N. Am. 33, pp. 907–932. DOI:10.1016/j. idc.2019.07.003.
  81. Vaarst, M., Steenfeldt, S., Horsted, K. (2015). Sustainable development perspectives of poultry production. World ‘s Poul. Sci. J., 71, pp. 609–620. DOI:10. 1017/S0043933915002433.
  82. Vinnytsia poultry farm. Available at:https://latifundist.com/ kompanii/1416-vinnitskaya-ptitsefabrika. (in Ukrainian).
  83. Wu, B., Qin, L., Wang, M., Zhou, T., Dong, Y., Chai, T. (2019). The composition of microbial aerosols, PM2.5, and PM10 in a duck house in Shandong province,China. Poult. Sci. 98, pp. 5913–5924. DOI:10.3382/ps/pez365.
  84. Wuthijaree, K., Lambertz, C., Vearasilp, T., Anusatsananun, V., Gauly, M. (2019). Prevalence of gastrointestinal helminths in Thai indigenous chickens raised under backyard conditions in Northern Thailand. J. Appl. Poult. Res., 28, pp. 221–229.
  85. WHO. (2005). Avian Influenza A (H5N1) infection in humans. N. Engl. J. Med., 353, pp.1374–1385. DOI:10.1056/NEJMra052211.
  86. WHO (2020). Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO, 2003-2020. Available at:https://www. who. int/influenza/humananimal_interface/2020_ DEC_tableH5N1.pdf?ua=1.
  87. WHO (2021). Facts sheets - antimicrobial resistance. Available at:https:// www.who.int/newsroom/factsheets/detail/antimicrobial-resistanceGeneva,Sw... nd.
  88. Zorman Rojs, O., Dovč, A., Krapež, U., Žlabravec, Z., Račnik, J., Slavec, B. (2021). Detection of laryngotracheitis virus in poultry flocks with respiratory disorders in Slovenia. Viruses. 13, 707 p.
AttachmentSize
PDF icon karkach_1_2023.pdf528.23 KB