You are here

Comparative analysis of physicochemical pa rameters of freshly squeezed juices from various citrus fruits

The history of citrus fruits goes back thousands of years, the plants originate from Southeast Asia. Most of the modern varieties of the genus Citrus are the result of long-term selection and crossing of three main species: Citrus reticulata, Citrus maxima, and Citrus medica. The consumption of citrus fruits has increased significantly in recent decades, due to their high nutritional value and availability. Today, citrus fruits are among the most widely cultivated fruits worldwide, with cultivation occurring on all continents except Antarctica. The total global pro duction of citrus fruits is over 161.8 million tonnes per year. The study aimed to evaluate the physicochemical properties of freshly squeezed citrus juices by deter mining such indicators as active and titratable acidity, vitamin C content, dry soluble substances and fruit maturity indices. A comparative analysis of the pH of freshly squeezed juices of different species of the genus Citrus was carried out. The study revealed that acidity is a variable indicator that depends on varietal characteristics, degree of maturity, and external factors. The lowest pH values were recorded for lime and lemon - 2.76 and 2.84, respectively, correlating with their pronounced sour taste. Orange, oroblanco and mandarin are characterized by moderate acidity (3.78-3.66). Grapefruit demonstrates an intermediate level of acidity with a characteristic bitterness, which determines its specific organoleptic properties. The titration analysis revealed that lime juice had the highest titratable acidity (4.55 %) compared to other citrus species. The data substantiated an inverse relationship between the titrant volume and pH. The lowest pH was observed in lime juice, consistent with its highest titratable acidity. In contrast, orange juice displayed the highest pH and the lowest titrant volume, signifying its lowest titratable acidity among the analyzed samples. The content of dry soluble substances in the studied fruits ranged from 7.52 to 11.78 %. Orange juice showed the highest concentration of these substances (11.78 %). Correlation analysis revealed a statistically significant relationship between the acidity of the medium and the content of ascorbic acid. The BrimA index showed a high correlation with the content of dry soluble substances and the sugar-acid ratio. The content of vitamin C in the studied citrus samples ranged from 26.21 to 57.25 mg/100 cm³. The highest ascorbic acid content was observed in orang es, exceeding the mandarins' values by half. Lemons contained 38% more vitamin C than limes. The concentration of vitamin C in grapefruit and oroblanco was almost the same.

Key words: citrus fruits, physicochemical parameters, pH, titratable acidity, soluble solids content, ascorbic acid, fruit ripening indices.

  1. Abakpa, G.O., Adenaike, O. (2021). Antioxidant compounds and health benefits of citrus fruits. European journal of nutrition & food safety, 13 (2), pp. 65–74. DOI:10.9734/ejnfs/2021/v13i23 0376.
  2. Addi, M., Elbouzidi, A., Abid, M., Tung munnithum, D., Elamrani, A., Hano, C. (2021). An overview of bioactive flavonoids from citrus fruits. Applied Sciences, 12 (1), 29 p. DOI:10.3390/app12010029.
  3. Al-Juhaimi, F.Y., Ghafoor, K.A. (2013). Bioactive compounds, antioxidant and physico-chemical properties of juice from lemon, mandarin and orange fruits cultivated in Saudi Arabia. Pak. J. Bot., 45 (4), pp. 1193–1196.
  4. Aslan, M.N., Sukan-Karaçağıl, B., Acar-Tek, N. (2024). Roles of citrus fruits on energy expendi ture, body weight management, and metabolic bio markers: a comprehensive review. Nutrition Reviews, 82 (9), pp. 1292–1307. DOI:10.1093/nutrit/nuad116.
  5. Budiarto, R., Mubarok, S., Sholikin, M. M., Sari, D. N., Khalisha, A., Sari, S. L., Adli, D. N. (2024). Vitamin C variation in citrus in response to genotypes, storage temperatures, and storage times: A systematic review and meta-analysis. Heliyon, 10, pp. 1–17. DOI:10.1016/j.heliyon.2024.e29125.
  6. Crook, J., Horgas, A., Yoon, S.J., Grundmann, O., Johnson-Mallard, V. (2021). Insufficient vitamin C levels among adults in the United States: results from the NHANES surveys, 2003–2006. Nutrients, 13 (11), 3910 p. DOI:10.3390/nu13113910.
  7. Czech, A., Zarycka, E., Yanovych, D., Zasad na, Z., Grzegorczyk, I., Kłys, S. (2020). Mineral content of the pulp and peel of various citrus fruit cultivars. Biological Trace Element Research, 193, pp. 555–563. DOI:10.1007/s12011-019-01727-1.
  8. Dadwal, V., Joshi, R., Gupta, M. (2022). A comparative metabolomic investigation in fruit sections of Citrus medica L. and Citrus maxima L. detecting potential bioactive metabolites using UH PLC-QTOF-IMS. Food Research International, 157. DOI:10.1016/j.foodres.2022.111486.
  9. Guo, H., Zheng, Y.J., Wu, D.T., Du, X., Gao, H., Ayyash, M., Gan, R.Y. (2023). Quality evaluation of citrus varieties based on phytochemical profiles and nutritional properties. Frontiers in Nutrition, 10. DOI:10.3389/fnut.2023.1165841.
  10. Hamid, S., Sharma, K., Kumar, K., Thak ur, A. (2024). Types and Cultivation of Citrus Fruits. In Citrus Fruits and Juice: Processing and Quality Profiling; Springer: Singapore, pp. 17–43. DOI:10.1007/978-981-99-8699-6_2.
  11. Hussain S.B., Shi C.Y., Guo L.X., Kam- ran H.M., Sadka A., Liu Y.Z. (2017). Recent advances in the regulation of citric acid metabolism in citrus fruit. Crit. Rev. Plant Sci., 36, pp. 241–256. DOI:10.1 080/07352689.2017.1402850.
  12. Ismail, A.Y., Nainggolan, M.F., Aminudin, S., Siahaan, R.Y., Dzulfannazhir, F., Sofyan, H.N. (2024). Characterization of chemical composition of eco-enzyme derived from banana, orange, and pine apple pineapple peels. Brazilian Journal of Biology, 84. DOI:10.1590/1519-6984.286961.
  13. Jaywant, S.A., Singh, H., Arif, K.M. (2022). Sensors and instruments for brix measurement: A review. Sensors, 22 (6), 2290 p.
  14. Junior, C.M. S., Silva, S.M.C., Sales, E.M., da Silva Velozo, E., Dos Santos, E.K.P., Canu- to, G.A.B., Biegelmeyer, R. (2023). Coumarins from Rutaceae: Chemical diversity and biological activities. Fitoterapia, 168. DOI:10.1016/j.fitote.2023.105489.
  15. Kalita, B., Roy, A., Annamalai, A., Lak- shmi, P.T.V. (2021). A molecular perspective on the taxonomy and journey of Citrus domestication. Perspectives in Plant Ecology, Evolution and Systematics, 53. DOI:10.1016/j.ppees.2021.125644.
  16. Khan, U.M., Sameen, A., Aadil, R.M., Sha hid, M., Sezen, S., Zarrabi, A., Butnariu, M. (2021). Citrus Genus and Its Waste Utilization: A Review on Health‐Promoting Activities and Industrial Application. Evidence‐Based Complementary and Alterna tive Medicine, 1. DOI:10.1155/2021/ 2488804.
  17. Khurshid, T., Creek, A., Sanderson, G., Zhao, X. (2024). Tree Performance, Yield, and Fruit Quality of ‘Valencia’Sweet Orange (Citrus sinensis L. Osbeck) Selections on New Poncirus trifoliata Root stocks. Horticulturae, 10 (4), 393 p. DOI:10.3390/horticulturae10040393.
  18. Kujawińska, M., Kawulok, I., Szczyrba, A., Grot, M., Bielaszka, A., Grajek, M. (2022). Vitamin C content in orange juices obtained by different methods. Journal of Education, Health and Sport, 12 (6), pp. 253–267. DOI:10.12775/JEHS.2022.12.06.025.
  19. Lachapelle M.Y., Drouin G. (2011). Inacti vation dates of the human and guinea pig vitamin C genes. Genetica, 139 (2), pp. 199–207. DOI:10.1007/s10709-010-9537-x.
  20. Lado J., Rodrigo J.M., Zacarias L.(2014). Maturity indicators and citrus fruit quality. Stewart Postharvest Rev., 2, pp. 1–6.
  21. Li, Z., Jin, R., Yang, Z., Wang, X., You, G., Guo, J., Pan, S. (2021). Comparative study on physicochemical, nutritional and enzymatic properties of two Satsuma mandarin (Citrus unshiu Marc.) varieties from different regions. Journal of Food Composition and Analysis, 95. DOI:10.1016/ j.jfca.2020.103614.
  22. Lu, X., Zhao, C., Shi, H., Liao, Y., Xu, F., Du, H., Zheng, J. (2023). Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Critical Reviews in Food Science and Nutrition, 63 (14), pp. 2018–2041. DOI:10.1080/10408398.2021.1969891.
  23. Maheshwari, S., Kumar, V., Bhadauria, G., Mishra, A. (2022). Immunomodulatory potential of phytochemicals and other bioactive compounds of fruits: A review. Food Frontiers, 3 (2), pp. 221–238. DOI:10.1002/fft2.129.
  24. Ogundele, O.O., Bolade, M.K. (2021). Biochemical characteristics and antioxidant properties of citrus juice from lemon (citrus limon), lime (Citrus aurantifolia) and grapefruit (Citrus paradisi) as influenced by degree of ripening. Asian Food Science Journal, 20 (3), pp. 40–51. DOI:10.9734/afsj/ 2021/v20i330277.
  25. Paul, V., Singh, A., Pandey, R. (2010). Determination of Titrable acidity (TA). Post-Harvest Physiology of Fruits and Flowers, pp. 44–45.
  26. Saini, R.K., Ranjit, A., Sharma, K., Prasad, P., Shang, X., Gowda, K.G.M., Keum, Y.S. (2022). Bioactive compounds of citrus fruits: A review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants, 11 (2), 239 p. DOI:10.3390/antiox11020239.
  27. Satpathy, L., Pradhan, N., Dash, D., Baral, P.P., Parida, S.P. (2021). Quantitative determination of vitamin C concentration of common edible food sources by redox titration using iodine solution. Letters in Applied NanoBioScience, 10 (3), pp. 2361–2369. DOI:10.33263/LIANBS103.23612369.
  28. Sayago-Ayerdi, S., García-Martínez, D.L., Ramírez-Castillo, A.C., Ramírez-Concepción, H.R., Viuda-Martos, M. (2021). Tropical fruits and their co-products as bioactive compounds and their health effects: A review. Foods, 10 (8), 1952 p. DOI:10.3390/foods10081952.
  29. Sharma, Y., Popescu, A., Horwood, C., Hak endorf, P., Thompson, C. (2021). Prevalence of hypovitaminosis C and its relationship with frailty in older hospitalised patients: a cross-sectional study. Nutrients, 13 (6), 2117 p. DOI:10.3390/nu13062117.
  30. Silva, E., Arruda, H., Pastore, G., Meireles, M. (2020). Xylooligosaccharides chemical stability after high-intensity ultrasound processing of prebiotic orange juice. Ultrasonics sonochemistry, 63. DOI:10.1016/j.ultsonch.2019.104942.
  31. Singh, N., Jaiswal, J., Tiwari, P., Sharma, B. (2020). Phytochemicals from citrus limon juice as potential antibacterial agents. The Open Bioactive Compounds Journal, 8 (1), pp. 1–6. DOI:10.2174/ 1874847302008010001.
  32. Singh, N., Sharma, R.M., Dubey, A.K., Awasthi, O.P., Porat, R., Saha, S., Carmi, N. (2023). Harvesting maturity assessment of newly developed citrus hybrids (Citrus maxima Merr.× Citrus sinensis (L.) Osbeck) for optimum juice quality. Plants, 12 (23), 3978 p. DOI:10.3390/plants12233978.
  33. Tiencheu, B., Nji, D.N., Achidi, A.U., Egbe, A.C., Tenyang, N., Ngongang, E.F.T., Fossi, B.T. (2021). Nutritional, sensory, physico-chemical, phytochemical, microbiological and shelf-life studies of natural fruit juice formulated from orange (Citrus sinensis), lemon (Citrus limon), Honey and Ginger (Zingiber officinale). Heliyon, 7 (6), pp. 45–52. DOI:10.1016/j.heliyon.2021.e07177.
  34. Xu, Q., Chen, L.L., Ruan, X., Chen, D., Zhu, A., Chen, C. (2013). The draft genome of sweet orange (Citrus sinensis). Nature genetics, 45 (1), pp. 59–66. DOI:10.1038/ng.2472.
  35. Yanti, S., Lins, H.Y., Chien, W.J. (2023). Evaluation of ascorbic acid and sugar content in taiwanese lemon (Citrus depressa H.) extract. Food and Agro-industry Journal, 4 (1), pp. 9–20.
  36. Zhang, J. Ritenour M.A. (2016). Sugar Com position Anylysis of Commercial Citrus Juice Products. Proc. Fla. State Hort. Soc., 129, pp. 178–180. DOI:10.3390/s22062290.
  37. Wang, Y.C., Chuang, Y.C., Hsu, H.W. (2008). The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food chemistry, 106 (1), рр. 277–284. DOI:10.1016/j.foodchem.2007. 05.086.
AttachmentSize
PDF icon polishchuk_1_2025.pdf528.02 KB