You are here

The cytogenetic infl uence of physical water indicators on the number of micronuclears in cells of predatory fi sh species

During the monitoring of cytological parameters of embryos and fi sh larvae under changing environmental conditions, it was found that the body adapts to the environmental temperature conditions at the cellular level. Threshold temperature is the limit of the resistance of body cells to the action of extreme ambient temperatures. Since this ability is diff erent for diff erent species, their temperature threshold is not the same. It is proved that for each fi sh species there is a certain temperature amplitude, within which their embryonic development is possible. The rate of passage of embryogenesis depends on temperature. Deviation from the optimal temperature and its approach to the “threshold” causes disturbances in the embryogenesis of fi sh, leads to the death of embryos or to the appearance of anomalies in their development. Under the infl uence of a threshold temperature on fertilized eggs, polyploidy of cells is possible. Genetic changes in somatic cells is an integral indicator of homeostasis disturbance. They characterize the pr esence of environmental mutagens and the eff ectiveness of the body's immune response. Normally, most genetic disorders are eliminated. The presence of such disorders is an indicator of stress, which leads to the appearance of abnormal cells and a decrease in the body's immune status. Such abnormalities can be detected at the chromosomal level. It has been proved that critical periods in the embryonic development of fi sh are manifested at the stages of crushing of morula cells and gastrulation in embryos during organogenesis. However, the presence of sensitive periods is not always associated with diff erentiation processes, for example, the onset of cell crushing, the period of embryo exit from the membranes.

Key words: predatory fi sh species, temperature regime, metabolism, micronuclear test, embryonic cell, nucleoli, stress factors, abiotic effect.

  1. Zhuravlyova, N.G. (2009). Vliyanie abioticheskikh i bioticheskikh faktorov sredy na vyzhivaemost embrionov i molodi ryb [The infl uence of abiotic and biotic environmental factors on the survival of embryos and juvenile fi sh]. Vestnik MGTU [Bulletin of MSTU]. no. 12 (2), pp. 338–343.
  2. Vovk, P.S. (1974). Reakczii embrionov i lichinok belogo amura na temperaturny`e vozdejstviya [Reaction of embryos and larvae of grass carp to temperature eff ects]. Raznokachestvennost rannego ontogeneza u ryb [The diversity of early ontogenesis in fi sh]. Kiev, pp. 191–226.
  3. Konstantinov, A.S. (1993) Vliyanie kolebanij temperatury na rost, energetiki i fi ziologicheskoe sostoyanie molodi ryb [The infl uence of temperature fl uctuations on the growth, energy and physiological state of juvenile fi sh]. Izvestiya RAN. Ser. Biologicheskaya [Proceedings of the RAS. Ser. biological]. no. 1, pp. 55–63.
  4. Lukiyanov, S.V. (2010). Vliyanie kolebanij abioticheskikh faktorov (pH, solenost`, temperatura) na ryb v embrionalno-lichinochnyj period razvitiya [ The infl uence of fl uctuations of abiotic factors (pH, salinity, temperature) on fi sh in the embryonic larval period of development]. Saransk, 145 p.
  5. Belousov, L.V. (2005). Osnovy obshchej embriologii [Fundamentals of General Embryology]. M.: Publ. MSU. 360 p.
  6. Schaefer, J., Ryan, A. (2006). Developmental plasticity in the thermal tolerance of zebrafi sh Danio rerio. Journal of Fish Biology. Vol. 69, no. 3, pp. 722–734.
  7. Bestgen, K.R., Williams, M.A. (1994). Eff ects of fl uctuating and constant temperatures on early development and survival of Colorado squawfi sh. Trans. Amer. Fish. Soc. Vol. 123, no. 4, pp. 574–579.
  8. Urho, L. (1996). Habitat shifts of perch larvae as survival strategy. Ann. Zool. Fennici. Vol. 33, pp. 329–340.
  9. Watanabe, Y. (1992). Eff ect of diel temperature alterations on specifi c growth of red sea bream. Oceanis. Vol. 18, no. 1, pp. 133–140.
  10. Kapshaj, D.S. (2011) Oczenka optimalnykh i subletalnykh temperatur u molodi razlichnykh vidov ryb [Assessment of optimal and sublethal temperatures in juveniles of various fi sh species]. Sovremennye problemy i perspektivy rybokhozyajstvennogo kompleksa. Mat. vtoroj nauchno-praktich. konf. molodykh uchenykh [Current problems and prospects of the fi shery complex. Mat. second scientifi c and practical. conf. young scientists]. M.: VNIRO, pp. 274–280.
  11. Andrades, J.A., Becerra, J., Fernández-Llebrez, P. (1996). Skeletal deformities in larval, juvenile and adult stages of cultured gilthead sea bream (Sparus aurata L.). Aquaculture. Vol. 141, pp. 1–11.
  12. Romanenko, V.D. (2004). Osnovy gidrobiologii [The basics of hydrobiology]. K.: Geneza, 664 p.
  13. Janauer, G.A. (2012) Aquatic Vegetation in River Flood plains: Climate Change Eff ects, River Restoration and Eco-hydrology Aspects Climate Change. Inferences from Paleoclimate and Regional Aspects. New York: Springir, pp. 149–156.
  14. Hochachka, P.W., Somero, G.N. (2002) Biochemical Adaptation: Mechanism and Process in Physiological Evolution. Oxford: Oxford University Press, 356 p.
  15. Nemova, N.N., Vysoczkaya, R.U. (2004) Biokhimicheskaya indikacziya sostoyaniya ryb [Biochemical indication of fi sh status]. M.: Nauka, 215 p.
  16. Carter, K. (2008). Eff ects of Temperature, Dissolved Oxygen/Total Dissolved Gas, Ammonia, and pH on Salmonids. Implications for California’s North Coast TMDLs, July. 53 p.
  17. Verbiczkij, V.B. (2008). Ponyatie e`kologicheskogo optimuma i ego opredelenie u presnovodny`kh pojkilotermny`kh zhivotny`kh [The concept of ecological optimum and its defi nition in freshwater poikilothermic animals] Zhurnal obshhej biologii [Journal of General Biology]. Vol. 69, no. 1, pp. 44–56.
  18. Detlaf, T.A. (2001). Temperaturno-vremenny`e zakonomernosti razvitiya pojkilotermny`kh zhivotny`kh [Temperature-time patterns of development of poikilothermic animals]. M.: Nauka, 211 p.
  19. Diana, J.S. (1984). The growth of largemouth bass, Micropterus salmoides, under constant and fl uctuating temperatures. J. Fish Biol. Vol. 24, no. 2, pp. 165–172.
  20. Barton, B.A. (2002). Stress in fi shes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and comparative biology. Vol. 42, pp. 517–525.
  21. Ievtushenko, M.Iu., Shevchenko, P.H., Khyzhniak, M.I. (2011). Naukovi-metodychni rekomendatsii shchodo vyboru indykatornykh orhanizmiv v systemi biomonitorynhu [High-tech recommendations for vibration and indicator organisms in biomonitoring systems]. Kyiv: Ukrainskyi fi tosotsialnyi tsentr [Kyiv: Ukrainian Phytosocial Center]. 24 p.
  22. Schneider, J.C., Copeland, J., Wolgamood, M. (2002). Tolerance of incubating walleye eggs to temperature fl uctuation. Aquaculture. Vol. 64, no. 1, pp. 75–76.
  23. Bermudes, M., Ritar, A.J. (1999). Eff ects of temperature on the embryonic development of thestriped trumpeter (Latris lineata Bloch and Schneider, 1801). Aquaculture. Vol. 176, pp. 245–255.
  24. Xu, G.C., Tang, X., Zhang, C.X., Gu, R.B., Zheng, J.L., Xu, P., Le, G.W. (2011). First studies of embryonic and larval development of Coilia nasus (Engraulidae) under controlled conditions. Aquaculture Research. 42(2), pp. 593–601. Available at:https://doi.org/10.1111/j.1365- 2109.2010.02655.x.
  25. Zhu, D.M., Yang, K., Gul, Y., Song, W., Zhang, X.H., Wang, W.M. (2014). Eff ect of photoperiod on growth and gonadal development of juvenile Topmouth Gudgeon Pseudorasbora parva. Environmental Biology of Fishes. 97(2). pp. 147– 156. Available at:https://doi.org/10.1007/s10641-013-0133-7.
  26. Del, Rio A.M., Davis. B.E., Fangue, N.A., Todgham, A.E. (2019). Combined effects of warming and hypoxia on early life stage Chinook salmon physiology and development. Conserv Physiol. 7(1), pp. 1–14. Available at:https://doi. org/10.1093/conphys/coy078.
  27. Komoroske, L.M., Connon, R.E., Lindberg, J., Cheng, B.S., Castillo, G., Hasenbein, M., Fangue, N.A. (2014). Ontogeny infl uences sensitivity to climate change stressors in an endangered fi sh. Conserv Physiol. 2. Available at:https://doi. org/10.1093/conphys/cou008.
  28. McDonnell, L.H., Chapman, L.J. (2015). At the edge of the thermal window: eff ects of elevated temperature on the resting metabolism, hypoxia tolerance and upper critical thermal limit of a widespread African cichlid. Conserv Physiol. 3. Available at:https://doi.org/10.1093/conphys/cov050.
  29. Kovács, L., Minya, D., Homoki, D. (2020). Eff ect of diff erent water temperatures on sex ratio, gonad developmen and production parameters of common carp (Cyprinus carpio L.). Aquaculture Research. 51(2), pp. 858–862. Available at:https://doi.org/10.1111/are.14407.
  30. Pittman, K., Yúfera, M., Pavlidis, M., Geff en, A.J., Koven, W., Ribeiro, L., Zambonino‐Infante, J.L., Tandler, A. (2013). Fantastically plastic: fi sh larvae equipped for a new world. Reviews Aquaculture. 5. pp. 224–267. Available at:https://doi.org/10.1111/raq.12034.
  31. Vodianitskyi, O.M., Potrokhov, O.S., Zinkovskyi, O.H. (2015). Vplyv kolyvan temperaturnoho rezhymu vodoimy na embrionalnyi rozvytok biloho tovstolobyka [The eff ect of fl uctuations in the temperature of the reservoir on the embryonic development of the white silver carp]. Rybohospodarska nauka Ukrainy [Fisheries Science of Ukraine]. no. 1, pp. 96–107. Available at:https://doi.org/10.15407/ fsu2015.01.096.
  32. Hrynevych, N.Ie., Kukhtyn, M.D., Semaniuk, N.V., Prysiazhniuk, N.M. (2018). Typy mikroiader u klitynakh ziaber malka raiduzhnoi foreli pid chas formuvannia mikrobiotsenozu biofi ltra UZV [Types of micronuclei in gill cells of rainbow trout gills during microbiocenosis formation of UZV biofi lter]. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy [Scientifi c Bulletin of the National University of Life and Environmental Sciences of Ukraine]. Vol. 293, pp.41–46.
  33. Bondarev, D. L., Kunah, O. M., Fedushko, M. P., Gubanova, N. L. (2019). The impact of temporal patterns of temperature and precipitation on silver Prussian carp (Carassius gibelio) spawning events. Biosystems Diversity. 27(2), pp. 106‒117. Available at:https://doi.org/10.15421/011915
  34. Bondarev, D., Kunah, O., Zhukov, O. (2018). Assessment of the impact of seasonal patterns climatic conditions on spawning events of the white bream Blicca bjoerkna (Linnaeus, 1758) in astronomical and biological time. Acta Biologica Sibirica, 4(2), pp. 48–64. Available at:https://doi.org/10.14258/abs.v4i2.4125
  35. Richards, J.G., Farrell, A.P., Brauner, C.J. (2009). Metabolic and Molecular Responses of Fish to Hypoxia/ Fish Physiology. Hypoxia. San Diego. Vol. 27, pp. 443–485.
  36. Anderson, N. (2012). The Eff ect sofhypoxia and temperature on developing embryos of the annual killifi sh Austrofundulus limnaeus. Portland State University PDX Scholar Dissertations and Theses Dissertations and Theses Fall. 52 p.
  37. Il`inskikh, N.N., Il`inskikh, I.N., Nekrasov, V.N. (1988). Ispol`zovanie mikroyadernogo testa v skrininge i monitoringe mutagenov [The use of micronucleus test in screening and monitoring of mutagens]. Czitologiya i genetika [Cytology and Genetics]. Vol. 22, no. 7, pp. 67–72.
  38. Il`inskikh, N.N. (1989). Fiziologicheskie faktory mutageneza v svyazi s izmeneniem immunoreaktivnosti organizma [Physiological factors of mutagenesis in connection with a change in the body's immunoreactivity]. III shkola-seminar po genetike i selekczii zhivotny`kh. II nauchny`e chteniya pamyati akademika D.K. Belyaeva [III school-seminar on genetics and animal breeding. II scientifi c readings in memory of academician D.K. Belyaeva]. Novosibirsk, 47 p.
  39. Arkhipchuk, V.V., Zhukinskij, V.N. (1987). Izmenenie kolichestvennykh kharakteristik yadryshek v e`mbriogeneze nekotorykh karpovykh ry`b i v svyazi s raznokachestvennost`yu ikry [Changes in the quantitative characteristics of nucleoli in the embryogenesis of some cyprinids and in connection with the diff erent quality of eggs]. Rybnoe khozyajstvo [Fisheries ]. K., no 43, pp. 18–24.
  40. Howel, W.M., Black, D.A. (1980). Controlled silverstaining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia. Vol. 36, pp.1014–1015.
  41. Kornienko, G.G., Bojko, N.E, Bugaev, L.A. (2005). Fiziologo-biokhimicheskie i geneticheskie issledovaniya ikhtiofauny` Azovo-chernomorskogo bassejna [Physiological, biochemical and genetic studies of the ichthyofauna of the Azov-Black Sea basin ]. Metodicheskoe rukovodstvo [Methodical guide]. Rostov-na-Donu: Everest, 105 p.
AttachmentSize
PDF icon hrynevychkhomiak_1_2020.pdf2.39 MB