You are here

Determination of favourable biotechnological conditions for Chironomus larva сultivation and development

 

The cultivation of Chironomus larva under artificial conditions needs necessary conditions in the vivarium to provide the biological characteristics of its reproduction, growth and development. Chironomus larva is biologically valuable feed and source of protein for many young species of fish. Being the natural feed it is of great demand now days.

The article presents the research results connected with the optimal water mass ratio and the nutrient medium for Chironomus larva. It has been prouved that the auxiliary agents have positive influence on Chironomus mosquitoes egg laying.

The study has been conducted in the vivarium of Bila Tserkva NAU Research Institute of Food and Animal Products Processing Technologies. The observation methods and statistical techniques have been used to establish the optimal technological parameters.

It has been scoped that Chironomus larva survives better in the nutrient medium, where the water mass ratio of silt is 1:5 and 1:6. There is a bigger amount of larva survival in these examples (in 5.6% times) in comparison with the control group (the ratio of water to silt is 1:2). There is the biggest amount of Chironomus larva deathratein the medium with the water mass ratio of silt 1:1.

The use of auxiliary agents in the nutrient medium has a positive effect on Chironomus egg laying. After washing the nutrient medium, it was found that the optimal amount of auxiliary agents was 40 items bigger (20 floating and 20 immersed in sludge), but their use allows to increase the number of eggs laid in 1.2 times.

Key words: silt, cultivation biotechnology, Chironomus, larvae, auxiliary agents, water to silt ratio, the survival of Chironomus larvae, water.

  1. Alymov, A.F., Bohatov, V.V., Holubkov, S.M. (2013). Produktsyonnaia hydrobyolohyia [Production hydrobiology]. 343 р.
  2. Alymov, A.F. (2016). Stabylnost y ustoichyvost vodnykh ekosystem [Stability and stability of water ecosystems]. Hydrobyol. zhurn.[ Gidrobiol. journals]. no.4 (47), pp. 3–15.
  3. Belyakov, V.P., Anufreyeva, E.V., Bazhora, A.I., Shadrin, N.V. (2017). Vliyaniye solenosti na lichinki khironomid (Diptera. Chironomidae) v gipersolenykh vodoyemakh Kryma [Effect of salinity on chironomid larvae (Diptera, Chironomidae) in hypersaline waters of the Crimea]. Povolzhskiy ekologicheskiy zhurnal [Volga ecological journal]. no. 3, pp. 240–250.
  4. Golygina, V.V., Ermalayeva, O.V., Broshkov, A.D. (2013). Khironomidy – modelnyy obyekt kariologicheskikh issledovaniy [Chironomids – a model object of cardiac research.] Metodicheskiye materialy (metodicheskoye posobiye) k letney akademicheskoy praktike po tsitologii dlya studentov 2-go kursa biologicheskogo otdeleniya [Methodical materials (methodical manual) to the summer academic practice in cytology for students of the 2nd course of the biological department]. Novosibirsk, pp. 23–26.
  5. Zamorov, V.V., Leonchyk, Ye.Iu., Zamorova, M.P., Dzhurtubaiev, M.M. (2016). Metod otsinky potentsiinoi chyselnosti i biomasy ryb-bentofahiv kontynentalnykh vodoim za stanom makrozoobentosu [The method of assessing potentialities and biomass of rib-benthic continental waters behind the camp of macrozoobenthos]. Hydrobyol. zhurn. [Hydrobiol. Journals]. 47 (47), no. 4, pp. 47–55.
  6. Klymenko, M.O., Pryshchepa, A.M., Klymenko, O.M., Stetsiuk, L.M. (2014). Otsiniuvannia stanu vodnykh ekosystem za pokaznykamy biotestuvannia: monohrafiia [Assessment of the state of aquatic ecosystems by indicators of biotesting: monograph]. Rivne: NUVHP, 170 р.
  7. Kononenko, R.V. (2018). Nove metodychne kerivnytstvo z kultyvuvannia kormovykh ta yistivnykh bezkhrebetnykh [A new methodical guide for the cultivation of feed and edible invertebrates]. Rybohospodarska nauka Ukrainy [Fishery science of Ukraine]. no. 1, pp. 105–106.
  8. Romanenko, V.D., Honcharova, M.T., Konovets, I.M., Kipnis, L.S. (2017). Vybirkovist mineralnykh substrativ lychynkamy Chironomus riparius [Selectivity of mineral substrates by Chironomus riparius larvae] Hydrobyol. zhurn. [Hydrobiol. journ]. no.1 (53), pp. 104–110.
  9. Fedonenko, O.V., Sharamok, T.S., Marenkov, O.M. (2014). Osnovy akvakultury: kultyvuvannia mikrovodorostei ta bezkhrebetnykh [Basics of aquaculture: cultivation of algae and invertebrates]. Dnipropetrovsk, 44 р.
  10. Baranov, V. (2016). Effects of bioirrigation of non-bitingmidges (Diptera: Chironomidae) on lake sediment respiration. Sci. Rep. 6, 27329; Available at:https://doi.org/10.1038/srep27329
  11. Beneberu, G., Mengistou, S. (2014). Head capsule deformitiesin Chironomusspp. (Diptera: Chironomidae) as indicator of environmental stressin Sebeta River, Ethiopia. African Journal of Ecology. 53(3), pp. 268–277. Available at:https://doi.org/10.1111/aje.12175.
  12. Deepak, R. (2014). Ecological analysis of Chironomus larvae (Diptera: Chironomidae) collected from Ayad Riverin Udaipurcity. International Journal of Fauna and Biological Studies. 1(5), pp. 20–21.
  13. Ebrahimnezhad, M., Allahemoglobinakhshi, E. (2013). A studyon Chironomidae larvae of Golpayegan River (Isfahan-Iraq) atgenericlevel. Iran J of Sciand Technol. 1, pp. 45–52.
  14. Grebenjuk, L. P., Tomilina, I. I. (2014). Morphological Deformations of Hard Chitinized Mouthpart Structuresin Larvae of the Genus Chironomus (Diptera, Chironomidae) asthe Index of Organic Pollutionin Freshwate rEcosystems. Inland Water Biology. 7(3), pp. 273–285. Available at:https://doi.org/10.1134/S1995082914030092.
  15. Herrero, O., Planelló, R., Morcillo, G. (2015) The plasticizer benzyl butyl phthalate (BBP) alters the ecdysone hormone pathway, the cellular response to stress, the energy metabolism, and several detoxication mechanismsin Chironomusriparius larvae. Chemosphere.
  16. Hölker, F. (2015).Tube-dwelling invertebrates: tiny ecosystem engineers have large effects inlake ecosystems. Ecol. Monogr. pp. 333–351.
  17. Kavanaugh, R.G., Egan, A.T., Ferrington, L.C. (2014). Factors affecting decomposition rates of chironomid (Diptera) pupal exuviae. Chironomus: Newsletteron Chironomidae Research. 27, pp. 16–24.
  18. Limnol, J. (2015). Decaying cyanobacteria decrease N2O emissions related to diversit of intestinal denitrifiers of Chironomus plumosus. Journal Original Article. 74(2), pp. 261–271.
  19. Miloševid, Đ. (2014). Different aggregation approaches in the chironomid community and thethreshold of acceptable information loss. Hydrobiologia. 727(1),pp. 35–50. Available at:https://doi.org/10.1007/s10750-013-1781-5
  20. Planelló, R. (2013) Transcriptional responses, metabolic activity and mouthpart deformities in natural populations of Chironomus riparius larvae exposed to environmental pollutants. EnvironToxicol. Available at:https://doi.org/ 10.1002/tox.21893.
  21. Rico, E., Quesada, A. (2013). Distribution and ecology of Chironomids (Diptera, Chironomidae) on Byers Peninsula Maritime Antarctica. Antarct Sci. 25(2), pp. 288–291.
  22. Soster, F. M. (2015). Potential impact of Chironomus plumosus larvae on hypolimnetic oxygen in the central basin of Lake Erie. J. Great Lakes Res. 41, pp. 348–357.
AttachmentSize
PDF icon merzlov_bezpaluy-1_2019.pdf607.01 KB