You are here

Effect of using nanoselenium bioconjugates together with probiotics on metabolic parameters of quail

In the context of the modern industrialisation of poultry farming and the growing global demand for quail products, fnding effective ways to improve bird productivity and health is extremely important. One of the most promising approaches is the use of nanoselenium bio-compounds with probiotics to improve the metabolic parameters of quail. Recent research has focused on the synthesis of selenium nanoparticles using probiotics as an environmentally friendly alternative to traditional methods of adding inorganic selenium to quail feed. The advantage of this approach is the production of a biocompatible and bioavailable form of selenium, which provides birds with the ability to effectively absorb and use selenium for various physiological processes. The effect of innovative feed additives, such as selenium nanoconjugates and probiotics, on various metabolic parameters in quail was investigated. These include the activity of antioxidant defence enzymes, indicators of carbonyl oxidative stress, protein carbonyl levels and protein metabolism. By adding selenium nanoconjugates and probiotics to quail feed, an improvement in antioxidant defence mechanisms was observed, leading to a reduction in oxidative stress and an improvement in the overall health of the birds. In addition, improved protein metabolism as a result of these supplements has been shown to have a positive impact on the productivity and quality of quail products. In summary, investing in high quality feed additives such as selenium nanoconjugates and probiotics is a strategic approach to improving the productivity and proftability of poultry production. By taking advantage of the benefts of nanotechnology and probiotics, farmers can optimise the health and productivity of their poultry flocks, meeting the growing demand for quail products on the national market.

Key words: bionanotechnology, nanoselenium conjugates, biogenic synthesis, quercetin, quail, blood, liver, biochemical parameters, oxidative modifcation of proteins.

  1. Alagawany, M., Qattan, S. Y., Attia, Y. A., El-Saadony, M. T., Elnesr, S. S., Mahmoud, M. A., Reda, F. M. (2021). Use of chemical nano-selenium as an antibacterial and antifungal agent in quail diets and its effect on growth, carcasses, antioxidant, immunity and caecal microbes. Animals, 11 (11), 3027 p. DOI:10.3390/ ani11113027
  2. Andrés, C.M.C., Pérez de la Lastra, J.M., Andrés Juan, C., Plou, F.J., Pérez-Lebeña, E. (2022). Impact of reactive species on amino acids—biological relevance in proteins and induced pathologies. International Journal of Molecular Sciences, 23 (22), 14049 p. DOI:10.3390/ijms232214049
  3. Badgar, K., Prokisch, J. (2020). The effects of selenium nanoparticles (SeNPs) on ruminant. Proceedings of the Mongolian Academy of Sciences, pp. 1–8. DOI:10.5564/pmas.v60i4.1500
  4. Bai, K., Hong, B., Huang, W., He, J. (2020). Selenium-nanoparticles-loaded chitosan/chitooligosaccharide microparticles and their antioxidant potential: a chemical and in vivo investigation. Pharmaceutics, 12 (1), 43 p. DOI:10.3390/ pharmaceutics12010043
  5. Basiouni, S., Tellez-Isaias, G., Latorre, J. D., Graham, B. D., Petrone-Garcia, V. M., El-Seedi, H. R., Shehata, A. A. (2023). Anti-Inflammatory and antioxidative phytogenic substances against secret killers in poultry: Current Status and Prospects. Veterinary sciences, 10 (1), 55 p. DOI:10.3390/vetsci10010055
  6. Bityutskyy V.., Tsekhmistrenko, S., Demchenko, A., Tsekhmistrenko, О., Melnуchenko, O., Melnychenko, Y., Oleshko, O. (2022). The use of agricultural production waste in relation to bio nano technology for the synthesis of functionalized selenium nanoparticles. Technology of production and processing of livestock products, 2, pp. 42–50. DOI:10.33245/2310-9289-2022-175-2-42-50
  7. Chernecky, C. C., Berger, B. J. (2012). Laboratory tests and diagnostic procedures. Elsevier Health Sciences.
  8. Davies, K. J., Delsignore, M. E., Lin, S. W. (1987). Protein damage and degradation by oxygen radicals. II. Modifcation of amino acids. Journal of Biological Chemistry, 262 (20), pp. 9902–9907. DOI:10.1016/ S0021-9258(18) 48019-2
  9. de Carvalho, L.M., de Souza, M.W., Fonseca, F.L.A., Moya, H.D. (2022). A comparative study of antioxidant capacity of amino acids using the Fe (II)/1-nitroso-2-naphthol-3, 6-disulfonic complex and the Folin–Ciocalteu reagent: application in blood serum. Canadian Journal of Chemistry, 101 (1), pp. 25–32. DOI:10.1139/cjc-2022-0085
  10. Demasi, M., Augusto, O., Bechara, E.J., Bicev, R.N., Cerqueira, F.M., da Cunha, F.M., Thomson, L. (2021). Oxidative modifcation of proteins: from damage to catalysis, signaling, and beyond. Antioxidants & Redox Signaling, 35 (12), pp. 1016–1080. DOI:10.1089/ars.2020.8176
  11. El-Kazaz, S. E., Abo-Samaha, M. I., Hafez, M. H., El-Shobokshy, S. A., Wirtu, G. (2020). Dietary supplementation of nano-selenium improves reproductive performance, sexual behavior and deposition of selenium in the testis and ovary of Japanese quail. Journal of advanced veterinary and animal research, 7 (4), 597 p. DOI:10.5455/javar.2020.g457
  12. Estévez, M. (2021). Protein carbonyls in meat systems: A review. Meat science, 89 (3), pp. 259–279. DOI:10.1016/j.meatsci.2011.04.025
  13. Fedorova, M., Bollineni, R. C., Hoffmann, R. (2014). Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass spectrometry reviews, 33 (2), pp. 79–97. DOI:10. 1002/ mas.21381
  14. Kadawarage, R. W., Dunislawska, A., Siwek, M. (2024). Ecological footprint of poultry production and effect of environment on poultry genes. Physical Sciences Reviews, 9 (2), pp. 567–589. DOI:10.1515/ psr-2021-0128
  15. Kehm, R., Baldensperger, T., Raupbach, J., Höhn, A. (2021). Protein oxidation-formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biology, 42, 101901 p. DOI:10.1016/j. redox.2021.101901
  16. Khurana, A., Tekula, S., Saif, M. A., Venkatesh, P., Godugu, C. (2019). Therapeutic applications of selenium nanoparticles. Biomedicine & Pharmacotherapy, 111, pp. 802–812. DOI:10.1016/j.biopha. 2018.12.146
  17. Kononenko, V. K., Ibatullin, I. I., Patrov, V. S. (2000). Workshop on the basics of scientifc research in animal husbandry. Kyiv, 96 p. (In Ukrainian).
  18. Koshti, B., Kshtriya, V., Singh, R., Walia, S., Bhatia, D., Joshi, K.B., Gour, N. (2021). Unusual Aggregates Formed by the Self-Assembly of Proline, Hydroxyproline, and Lysine. ACS Chemical Neuroscience, 12 (17), pp. 3237–3249. DOI:10.1021/acschemneuro.1c00427
  19. Lowry, O. H., Rosenbrough, N. I., Farr, A. R. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193 (1), pp. 265-275.
  20. Lukanov, H. (2019). Domestic quail (Coturnix japonica domestica), is there such farm animal?. World's poultry science journal, 75 (4), pp. 547–558. DOI:10.1017/S0043933919000631
  21. Akagawa, M. (2021). Protein carbonylation: molecular mechanisms, biological implications, and analytical approaches. Free Radical Research, 55, 4, pp. 307–320. DOI:10.1080/10715762.2020.1851027
  22. Nabi, F., Arain, M. A., Hassan, F., Umar, M., Rajput, N., Alagawany, M., Liu, J. (2020). Nutraceutical role of selenium nanoparticles in poultry nutrition: a review. World's Poultry Science Journal, 76 (3), pp. 459–471. DOI:10.1080/ 00439339.2020.1789535
  23. Nemati, Z., Ahmadian, H., Besharati, M., Lesson, S., Alirezalu, K., Domínguez, R., Lorenzo, J. M. (2020). Assessment of dietary selenium and vitamin E on laying performance and quality parameters of fresh and stored eggs in Japanese quails. Foods, 9 (9), 1324 p. DOI:10.3390/foods9091324
  24. Qu, X., Cai, C., He, J., Wei, Y., Mao, L., Yuan, X., Sun, A. (2014). Effects of selenium yeast and nano-selenium on performance, egg quality, egg selenium content and serum antioxidant indices of quails during the late laying period. Chinese Journal of Animal Nutrition, 26 (3), pp. 732–738.
  25. Reitman, S., Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American journal of clinical pathology, 28 (1), pp. 56–63. DOI:10.1093/ajcp/28.1.56
  26. Sarmiento-García, A., Sevim, B., Olgun, O., Ahmet-Gökmen, S. (2022). Effects of different inorganic selenium levels in laying quails (Coturnix coturnix japonica) diets on performance, egg quality, and serum biochemical parameters. Veterinaria México OA, 9 p. DOI:10.22201/fmvz.24486760e.2022.1046
  27. Simoes, M. S. (1965). A sensitive method for the measurement of serum uric acid using hydroxylamine. The Journal of laboratory and clinical medicine, 65, pp. 665–668. PMID:14279145.
  28. Singh, A., Kukreti, R., Saso, L., Kukreti, S. (2019). Oxidative stress: a key modulator in neurodegenerative diseases. Molecules, 24 (8), 1583 p. DOI:10.3390/molecules24081583
  29. Sobolev, O. I., Gutyj, B. V., Nedashkivsky, V. M., Sobolieva, S. V., Liskovich, V. A., Tkachenko, S. V., Vus, U. M. (2024). Mathematical justifcation of the optimal rate of selenium introduction into mixed feed for broiler chickens. Scientifc Messenger of LNU of Veterinary Medicine and Biotechnologies. Agricultural sciences, 26 (100), pp. 27–36. DOI:10.32718/nvlvet-a10004
  30. Tang, M., Fang, R., Xue, J., Yang, K., Lu, Y. (2022). Effects of Catalase on Growth Performance, Antioxidant Capacity, Intestinal Morphology, and Microbial Composition in Yellow Broilers. Front Vet Sci., 9:802051. DOI:10.3389/fvets. 2022.802051
  31. Tsekhmistrenko, O. S., Bityutskyy, V., Tsekhmistrenko, S., Melnichenko, O., Tymoshok, N., Spivak, M. (2019). Use of nanoparticles of metals and non-metals in poultry farming. Animal Husbandry Products Production and Processing, 2, pp. 113–130. DOI:10.33245/2310-9289-2019-150-2-113-130
  32. Tsekhmistrenko, S. I., Bityutskyy, V. S, Tsekhmistrenko, О. S., Demchenko, O. A., Tymoshok, N. O, Melnychenko, O. M. Environmental biotechnologies of "green" synthesis of nanoparticles of metals, metal oxides, metalloids and their use. 270 p. (In Ukrainian).
  33. Tsekhmistrenko, О., Bityutskii, V., Tsekhmistrenko, S., Kharchyshyn, V., Tymoshok, N., Spivak, M. (2020). Efciency of application of inorganic and nanopreparations of selenium and probiotics for growing young quails. Theoretical and Applied Veterinary Medicine, 8 (3), pp. 206–212. DOI:10.32819/2020.83030
  34. Yan, L. J. (2009). Analysis of oxidative modifcation of proteins. Current protocols in protein science, 56 (1), pp. 14–4. DOI:10.1002/0471140864.ps1404s55
  35. Zoidis, E., Seremelis, I., Kontopoulos, N., Danezis, G.P. (2018). Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants, 7 (5), 66 p. DOI:10.3390/antiox7050066
AttachmentSize
PDF icon bityutskyy_1_2024.pdf453.93 KB