You are here

Nutrient digestibility and energy value of hydrolysed feather meal in poultry

Hydrolysed feather meal is a promising alternative protein feed for animals, containing 75 90% protein and helping reduce the environmental risks of poultry waste disposal. The effectiveness and nutritional value of feather meal depend significantly on the quality of the starting material and the technological features of its production (temperature, pressure, processing mode, use of acids, alkalis, or enzymes, degree of purification from impurities, etc.). Despite the significant potential for replacing traditional protein feeds (soybean meal, fish meal), one of the main problems remains the insufficient number of reliable studies and data on the nutritional value of hydrolysed feather meal for different animal species, as well as the presence of legislative restrictions on its use in animal nutrition (EU Regulation No. 999/2001). The aim of this work was to study the digestibility of nutrients and the energy value of hydrolysed feather meal in commercial broiler chickens and young quails for meat production. For the experiment, 4 heads of typical Cobb-500 cross chickens aged 24 days (average body weight 1400.8 g) and 4 young Pharaoh quails aged 30 days (average body weight 225.0 g) were selected. The birds were kept in individual cages using typical compound feeds for broiler chickens and young quails. The experiment to study feed digestibility was carried out according to a differentiated scheme in two consecutive cycles lasting 7 days; the preliminary and transitional periods were 3 days each. The digestibility of feather meal was studied by replacing 10% of the main diet with the studied flour (5%). Feather meal, produced by the technology of hydrothermal hydrolysis with the influence of an electromagnetic field, contained 75.6% crude protein, 1.9% crude fibre, 1.9% crude fat, and 1.4% NFE. In experiments on young quails, the digestibility coefficient of crude protein was determined at 79.7 ± 9.48% with an average level of variation (23.7%). The calculated digestibility coefficients of crude fat (72.3 ± 15.80%, CV 30.9%), crude fibre (20.3 ± 7.35%, CV 51.08%) and organic matter (62.1 ± 16.13%, CV 44.9%) are less reliable due to the high variation in the values. The apparent digestibility coefficients of nutrients from hydrolysed feather meal, determined in experiments on broiler chickens, in most cases exceeded the 0–100% range. The calculated value of the apparent metabolizable energy (young quails) in hydrolysed feather meal is 11.38 MJ/kg.

Keywords: broilers, quails, hydrolysed feather meal, protein, digestibility, metabolizable energy, nutrients.

  1. Antioxidant activity and in vitro protein digestibility of chicken feather protein hydrolysates / O.B. Akpor et al. Research Square. Preprint (Version 1). 2019. P. 1–4. DOI:10.21203/rs.2.14464/v1.
  2. Soni A., Chand S., Talukder S. Feather meal and its nutritional impact. Poultry World, Misset Uitgeverij B.V. 2017. URL:https://www.poultryworld.net/Nutrition/ Articles/2017/2/Feathermeal-and-its-nutritional-impact-95745E/.
  3. Growth, livability, feed consumption, and carcass composition of the Athens Canadian Random Bred 1955 meat-type chicken versus the 2012 high-yielding Cobb 500 broiler / K.E. Collins et al. Poult. Sci. 2014. Vol. 93. No 12. P. 2953–2962. DOI:10.3382/ps.2014-04224/.
  4. Feather meal / V. Heuze et al. Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. 2020. URL:https://earthwormexpress.com/future processes-and-technology/feather-meal/.
  5. Akpor O.B., Deborah J.E., Oluba O.M. Comparative decolouration of crystal violet dye using Chicken Feather fibre, chemical oxidation and bacterial cells. Journal of Environmental Science and Technology. 2018. Vol. 11. No 5. P. 246–253. DOI:10.3923/JEST.2018.246.253.
  6. Papadopoulos M.C. Processed chicken feathers as feedstuff for poultry and swine. A review. Agricultural Wastes. 1985. Vol. 14. No 4. P. 275 290. DOI:10.1016/S0141-4607(85)80009-3.
  7. Korniłłowicz-Kowalska T., Bohacz J. Biodegradation of keratin waste: theory and practical aspects. Waste management. 2011. Vol. 31. No. 8. P. 1689–1700. DOI:10.1016/j.wasman.2011.03.024.
  8. Crawshaw R. Co-product feeds in Europe: Animal feeds derived from industrial processing. Lulu.com. 2019. URL:https://www.lulu.com/fr/ca/shop/robin-crawshaw/co-product-feeds-in-eu rope/paperback/product-24469721.html.
  9. Zaghloul T.I., Embaby A.M., Elmahdy A.R. Biodegradation of chicken feathers waste directed by Bacillus subtilis recombinant cells: Scaling up in a laboratory scale fermentor. Bioresource technology. 2011. Vol. 102. No 3. P. 2387–2393. DOI:10.1016/j.biortech.2010.10.106.
  10. Fabrication and characterization of keratin starch biocomposite film from chicken feather waste and ginger starch / O.M. Oluba et al. Scientific Reports. 2021. Vol. 11. No. 1. 11 p. DOI:10.1038/ s41598-021-88002-3.
  11. Вербицький П. Утилізація відходів тваринного походження в Україні. Тваринництво України. 2008. № 5. С. 2–6.
  12. Сучасні технології переробки відходів птахівництва і виробництва високопротеїнових кормових добавок: вітчизняний і зарубіжний досвід / М.В. Гладій та ін. Розведення і генетика тварин. 2016. №. 51. С. 302–310. URL:http://nbuv.gov.ua/UJRN/rgt_2016_51_43.
  13. Ковальчук С.І. Електротехнологічний комплекс для гідролізної переробки побічних продуктів птахівництва під впливом магнітного поля: дис. … канд. тех. наук: 141 / Національний університет біоресурсів і природокористування України. Київ, 2023. 180 c. URL:https://nubip. edu. ua/sites/default/files/u145/dis_kovalchuk.pdf.
  14. Nursinatrio and Rudy Agung Nugroho Hydrolyzed Chicken Feather Meal as Protein Source for Red Tilapia (Oreochromis sp.) Aquafeeds. Pakistan Journal of Zoology. 2019. Vol. 51 (4). P. 1489–1496. DOI:10.17582/journal.pjz/2019.51.4.1489.1496.
  15. Global Feather Meal Market – Industry Trends and Forecast to 2028. Data bridge market research. 2021. 320 p. URL:https://www.databridgemarketresearch.com/reports/global-feather-meal-mar ket.
  16. Черниш В.А., Отченашко В.В. Технології виробництва гідролізованого пір’яного борошна. Сучасні технології у тваринництві та рибництві: навколишнє середовище, виробництво продукції, екологічні проблеми: зб. матеріалів 79-ї міжнар. наук.-практ. конф., м. Київ, 23–24 квіт. 2025. С. 185–187.
  17. Csapó J., Albert C. Methods and procedures for the processing of feather from poultry slaughterhouses and the application of feather meal as antioxidant. Acta Universitatis Sapientiae, Alimentaria. 2018. Vol. 11. No 1. P. 81–96. DOI:10.2478/aus al-2018-0005.
  18. Isolation and characterization of biofunctional keratin particles extracted from wool wastes / J. Zhang et al. Powder technology. 2013. Vol. 246. P. 356–362. DOI:10.1016/j.powtec.2013.05.037.
  19. Coward-Kelly G., Chang V.S., Agbogbo F.K., Holtzapple M.T. Lime treatment of keratinous materials for the generation of highly digestible animal feed: 1. Chicken feathers. Journal of Bioresource Technology. 2006. Vol. 97. No. 11. P. 1337–1343. DOI:10.1016/j.biortech.2005.05.021.
  20. Thazeem B., Umesh M., Vikas O. V. Bioconversion of poultry feather into feather meal using proteolytic Bacillus species: a comparative study. Int. J. Adv. Sci. Res. 2016. Vol. 1. P. 10–12. URL:https://allscientificjournal.com/assets/archives/2016/vol1is sue1/1-1-22-254.pdf.
  21. Kumar C. G., Takagi H. Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnology advances. 1999. Vol. 17. No. 7. P. 561–594. DOI:10.1016/S0734-9750(99)00027-0.
  22. Sinkiewicz I., Śliwińska A., Staroszczyk H., Kołodziejska I. Alternative methods of preparation of soluble keratin from chicken feathers. Waste and biomass valorization. 2017. Vol. 8. P. 1043–1048. DOI:10.1007/s12649-016-9678-y.
  23. Morris D.L., Judy J.V., Kononoff P.J. Use of indirect calorimetry to evaluate utilization of energy in lactating Jersey dairy cattle consuming diets with increasing inclusion of hydrolyzed feather meal. Journal of Dairy Science. 2020. Vol. 103. No. 5. P. 4206–4217. URL:https://www.journalof dairyscience.org/article/S0022-0302(21)00863-8/fulltext.
  24. Johnson K.A., Busdieker-Jesse N., McClain W.E., Lancaster P.A. Feeding strategies and shade type for growing cattle grazing endophyte-infected tall fescue. Livest. Sci. 2019. Vol. 230. DOI:10.1016/j. livsci.2019.103829.6.
  25. Hydrolyzed feather meal in sheep diets / A.F. Branco et al. Rev. Bras. Zootec. 2003. Vol. 32. No P. 1454–1460. DOI:10.1590/s151635982003000600020.
  26. Nutritional value of expanded feather meal and its effect on the growth performance of weaned piglets / Z. Chen et al. Swine Prod. 2019. Vol. 3. No. 18. URL:https://www.cabdirect.org/ cabdirect/ab stract/20203021858.
  27. Protein digestibility of enzymatic hydrolysis feather meal in vitro and its application in growing pigs / X. Li et al. Chinese J. Anim. Nutr. 2012. Vol. 48. No. 15. P. 33–36. URL:http://www.zgxmzz. cn/wkc3/WebPublication/paperDigest.aspx?paper ID=e431afcb-45ca-4357-ac4b-bd627a147d8d.
  28. Ajayi H., Iyayi, E. Performance of broiler chickens fed hydrolysed feather meal. Proc. Int. Poult. Summ. 2015. P. 1–5. URL:https://www.researchgate.net/publication/279267385_ PERFORMANCE_ OF_BROILER_CHICKENS_FED_HY DROLYSED_FEATHER_MEAL.
  29. Transforming Feather Meal Into a High-Performance Feed for Broilers / M. Salehizadeh et al. Veterinary Medicine and Science. 2025. Vol. 11. No. 1. DOI:10.1002/vms3.70199.
  30. Pertiwi A., Widodo E., Nur Ikhsan M., Sundu B. The utilization of feather meal to increase duck production, carcass quality and feathers growth of local Bali ducks. Livest. Res. Rural Dev. 2017. Vol. 29. No. 12. 224 p. URL:http://www.lrrd.org/lrrd29/12/sund29224.html.
  31. Campos I., Matos E., Marques A., Valente L.M.P. Hydrolyzed feather meal as a partial fish meal replacement in diets for European seabass (Dicentrarchus labrax) juveniles. Aquaculture. 2017. Vol. 476. P. 152–159. DOI:10.1016/j.aquaculture.2017.04.024.
  32. The effects of partial replacement of fishmeal protein by hydrolysed feather meal protein in the diet with high inclusion of plant protein on growth performance, fillet and physiological parameters of Pengze crucian carp (Carassius auratus var. Pengze) / R. Yu et al. Aquacult. Res. 2020. Vol. 51. No. 2. P. 636–647. DOI:10.1111/are.14411.
  33. Вакуленко І.С., Данець Л.М., Лучин І.С., Данілова Т.М. Технологія ефективного використання нетрадиційного високобілкового корму в годівлі кролів. Наук.-техн. бюл. Харків: НААН. Ін-т тваринництва, 2016. Вип. 115. С. 31–36.
  34. Determination of the nutritional value of diet containing Bacillus subtilis hydrolyzed feather meal in adult dogs / G.S. Machado et al. Animals. 2021. Vol. 11. No. 12. DOI:10.3390/ani 11123553.
  35. Supplementation with degradable and undegradable protein sources in rumen on cows fed Urochloa humidicola. II. Ruminal fermentation, degradation of organic matter and blood chemistry on crossbred cows / R.E. Mora-Luna et al. Revista Científica de la Facultad de Ciencias Veterinarias. 2015. Vol. 25. No. 1. P. 63–73. URL:https://www. researchgate.net/publication/272791359Supplementation_With_Degradable_and_Undegradable_Protein_Sources_in_Rumen_on_Cows_Fed_Urochloa_humidicola_II_Ruminal_Fer mentation_Degradation_of_Organic_Matter_and_Blo od_Chemistry_on_Crossbred_Cows.
  36. Habib G., Khan N.A., Ali M., Bezabih M. In situ ruminal crude protein degradability of by-products from cereals, oilseeds and animal origin. Lives. Sci. 2013. Vol. 153. No. 1–3. P. 81–87. DOI:10.1016/j.livsci.2013.01.017.
  37. In vitro antioxidant properties and digestibility of chicken feather protein hydrolysates / O.B. Akpor et al. Food Research. 2020. Vol. 4. No. 4. P. 1053–1059. DOI:10.26656/fr.2017.4(4).40.
  38. Aminoacid composition and digestible ami no acid content in animal protein by-product meals fed to growing pigs / B.J. Kerr et al. J. Anim. Sci. 2019. Vol. 97. No. 11. P. 4540–4547. DOI:10.1093/jas/skz294.
  39. Regulation (EC) No 999/2001 of the European Parliament and of the Council of 22 May 2001 laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. Journal officiel n° L 147 du 31/05/2001. P. 1–40. URL:http://data.europa.eu/eli/reg/2001/999/oj.
  40. Методологія та організація наукових досліджень у тваринництві / за ред. І.І. Ібатулліна, О.М. Жукорського. Київ: Аграр. наука, 2017. 328 с.
  41. Лавринюк О.О., Бурлака В.А. Зоохімічний аналіз кормів. Хімічний та атомно-адсорбційний аналіз кормів: навч. практ. / за ред. В.А. Бурлаки. Житомир, 2016. 110 с. URL:http://ir.polissiauniver.edu.ua/bitstream/123456789/8665/1/Zoochemical%20analysis2016_2_110.PDF.
  42. Отченашко В.В. Енергетична цінність кормів для дорослих м’ясних перепелів. Зб. наук. праць Вінницького національного аграрного університету. 2011. Вип. 10 (50). С. 16–26. URL:https://socrates.vsau.org/repository/getfile.php/3334.pdf.
  43. Практикум з годівлі сільськогосподарських тварин: навч. пос. / І.І. Ібатуллін та ін. / за ред. І.І. Ібатулліна. Київ, 2015. 422 с.
  44. Осадча Ю.В. Математичні методи в біології. Київ: «ЦП «КОМПРИНТ», 2017. 609 с.
  45. Ravindran V. Progress in ileal endogenous amino acid flow research in poultry. J Anim Sci Bio technol. 2021. Vol. 12. No. 5. 11 p. DOI:10.1186/s40104-020-00526-2.
  46. Parsons C.M. Unresolved issues for amino acid digestibility in poultry nutrition. Journal of Applied Poultry Research. 2020. Vol. 29. Issue 1. P. 1–10. DOI:10.1016/j.japr.2019.12.007.
  47. Zhang F., Adeola O. Techniques for evaluating digestibility of energy, amino acids, phosphorus, and calcium in feed ingredients for pigs. Anim Nutr. 2017. Vol. 3 (4). P. 344–352. DOI:10.1016/j.aninu.2017.06.008.
  48. Apparent digestibility of proteinaceous feed ingredients from animal and plant origin for two tropical species snubnose pompano Trachinotus blochii and mangrove red snapper Lutjanus argentimacula tus / A.A. Siddik et al. Aquaculture Reports. 2024. Vol. 39. 9 p. DOI:10.1016/j.aqrep.2024.102526.
  49. Evaluation of Apparent Nutrient Digestibili ty of Novel and Conventional Feed Ingredients in Sobaity Seabream (Sparidentex hasta) for Sustainable Aquaculture / S. Zehra et al. Fishes. 2025. Vol. 10. No. 6. 265 p. DOI:10.3390/fishes10060265.
  50. Zewdie A.K. The Different Methods of Measuring Feed Digestibility: A Review. EC Nutrition. 2019. P. 68–74. URL:https://ecronicon.net/assets/ecnu/pdf/ECNU-14-00542.pdf?utm_source=chatg....
  51. Bryan D.D.S.L., Classen H.L. In Vitro Methods of Assessing Protein Quality for Poultry. Animals. 2020. Vol. 10. No. 4. 551 p. DOI:10.3390/ani10040551.
AttachmentSize
PDF icon otchenashko_2_2025.pdf559.15 KB