You are here

Toxicity, biotransformation and bioaccumulation of silver nanoparticles in laboratory conditions and aquatic ecosystems

Generalized studies of the world scientific literature on the fate and risk assessment of exposure to silver nanoparticles (NPAg) both at the ecosystem level and at the organism level, as well as in the laboratory. It is emphasized that the toxic effect of silver nanoparticles, mechanisms and methods of action of NPAg on the body of aquatic organisms have been sufficiently studied in laboratory practice. However, there are some gaps and discrepancies between the results of laboratory tests and the study of real environmental consequences, and such inconsistencies hinder the development of appropriate effective measures to achieve environmental well-being. To bridge such gaps, this review summarizes how environmental conditions and the physicochemical properties of NPAg influence conflicting conclusions between laboratory and real-world environmental studies. It is emphasized that modern research on the pathways of entry, transformation and bioaccumulation of silver nanoparticles in natural aquatic ecosystems emphasizes the ability of such nanoparticles to penetrate intact physiological barriers, which is extremely dangerous. It is proved that silver nanoparticles have a toxic effect on microorganisms, macrophytes and aquatic organisms. The toxic effects of NPAg cover almost entire aquatic ecosystems. A study by a number of authors on the factors influencing the mobility, bioavailability, toxicity and environmental fate of Ag nanoparticles was analyzed to assess the environmental risk. In addition, this review systematically examines the various toxic effects of silver nanoparticles in the environment and compares these effects with the results obtained in laboratory practice, which is useful for assessing the environmental effects of such compounds. The dangerous chronic effects of low-concentration NPAg (μg/l) on natural aquatic ecosystems over a long period of time (months to several years) have been described in detail. In addition, the prospects for future studies of NPAg toxicity in natural freshwater environments are emphasized.

Key words: nanoparticles of the medium (NPAg), ecosystem, laboratory wash, toxicity, aquatic organisms, ecological factors.

  1. Tsekhmistrenko, O.S., Bityutskyy, V.S., Tsekhmistrenko, S.I., Kharchishin, V.M., Melnichenko, O.M., Rozputnyy, O.I., Malina, V.V., Prysiazhniuk, N.M., Melnichenko, Y.О., Vered, P.I., Shulko, O.P., Onyshchenko, L.S. (2020). Nanotechnologies and environment: A review of pros and cons. Ukrainian Journal of Ecology. Vol. 10 (3), pp.162–172.
  2. Bityutskii, V., Tsekhmistrenko, S., Tsekhmistrenko, O., Tymoshok, N., Spivak, M. (2020). Regulation of redox processes in biological systems with the participation of the Keap1/Nrf2/ARE signaling pathway, biogenic selenium nanoparticles as Nrf2 activators. Regul. Mech. Biosyst. Vol. 11(4), pp.483–493.
  3. Tsekhmistrenko, O.S., Bitutyky, V.S., Tsekhmistrenko, S.I., Melnichenko, O.M., Timoshok, N.O., Spivak, M.Ya. (2019). Use of nanoparticles of metals and non-metals in poultry farming.Technology of production and processing of livestock products, 2’2019. pp.113–130.
  4. Tsekhmistrenko, S.I., Bityutskyy, V.S., Tsekhmistrenko, O.S. (2020). Markers of oxidative stress in the blood of quails under the influence of selenium nanoparticles. In Impact of modernity on science and practice.Abstracts of XVIII International Scientific and Practical Conference. Boston, USA, pp. 177–180.
  5. Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L., Behra, R. (2008). Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol. Vol. 42, pp. 8959–8964.
  6. Oukarroum, A., Bras, S., Perreault, F., Popovic, R. (2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliellater tiolecta. Ecotoxicol Environ Saf. Vol. 78, pp. 80–85.
  7. Taylor, C., Matzke, M., Kroll, A., Read, D.S., Svendsen, C., Crossley, A. (2016). Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances. Environ Sci Nano. Vol. 3, pp. 396–408.
  8. Zhang, W., Liu, X., Bao, S., Xiao, B., Fang, T. (2016). Evaluation of nanospecific toxicity of zinc oxide, copper oxide, and silver nanoparticles through toxic ratio. J Nanopart Res. Vol. 18, 372 p.
  9. Burello, E. (2017). Review of (Q)SAR models for regulatory assessment of nanomaterials risks. Nano Impact. Vol. 8, pp. 48–58.
  10. Hartmann, N.B., Agerstrand, M., Lützhoft, H.Ch., Baun, A. (2017). Nano CRED: a transparent framework to assess the regulatory adequacy of ecotoxicity data for nanomaterials–relevance and reliability revisited. Nano Impact. 6, pp. 81–89.
  11. Yin, Y., Tan, Z., Hu, L., Yu, S., Liu, J., Jiang, G. (2017). Isotope tracers to study the environmental fate and bioaccumulation of metal-containing engineered nanoparticles: techniques and applications. Chem Rev. Vol. 117, pp. 4462–4487.
  12. Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol. Vol. 43, pp. 9216–9222.
  13. Mueller, N.C., Nowack, B. (2008). Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol. Vol. 42, 4447–4453.
  14. Musee, N. (2011). Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Hum Exp Toxicol. Vol. 30, pp. 1181–1195.
  15. Peijnenburg, W.J.G.M., Baalousha, M., Chen, J., Chaudry, Q., Von der Kammer, F., Kuhlbusch, T.A.J., Lead, J., Nickel, C., Quik, J.T.K., Renker, M., Wang, Z., Koelmans, A.A. (2015). A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Crit Rev Environ Sci Technol. Vol. 45, pp. 2084–2134.
  16. Peters, R.J.B., van Bemmel, G., Milani, N.B.L., den Hertog, G.C.T., Undas, A.K., Van der Lee, M., Bouwmeester, H. (2018). Detection of nanoparticles in Dutch surface waters. Sci Total Environ. Vol. 621, pp. 210–218.
  17. Li, L., Hartmann, G., Doblinger, M., Schuster, M. (2013). Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany. Environ Sci Technol. Vol. 47, pp. 7317– 7323.
  18. Liu, J., Hurt, R.H. (2010). Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol. Vol. 44, pp. 2169–2175.
  19. Martin, M.N., Allen, A.J., MacCuspie, R.I., Hackley, V.A. (2014). Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles. Langmuir. Vol. 30, pp. 11442–11452.
  20. Levard, C., Reinsch, B.C., Michel, F.M., Oumahi, C., Lowry, G.V., Brown, G.E. (2011). Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol. Vol. 45, pp. 5260–5266.
  21. Thalmann, B., Voegelin, A., Morgenroth, E., Kaegi, R. (2016). Effect of humic acid on the kinetics of silver nanoparticle sulfidation. Environ Sci Nano. 3, pp. 203–212.
  22. Ellis, L.Ja., Baalousha, M., Valsami-Jones, E., Lead, J.R. (2018). Seasonal variability of natural water chemistry affects the fate and behaviour of silver nanoparticles. Chemosphere, Vol. 191, pp. 616–625.
  23. Dobias, J., Bernier-Latmani, R. (2013). Silver release from silver nanoparticles in natural waters. Environ Sci Technol. Vol. 47, pp. 4140–4146.
  24. Gliga, A.R., Skoglund, S., Wallinder, I.O., Fadeel, B., Karlsson, H.L. (2014). Sizedependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. Vol. 11, 11 p.
  25. Ma, R., Levard, C., Marinakos, S.M., Cheng, Y., Liu, J, Michel, F.M., Brown, G.E., Lowry, G.V. (2012) Size[1]controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol. Vol. 46, pp. 752–759.
  26. Blakelock, G.C., Xenopoulos, M.A., Norman, B.C., Vincent, J.L., Frost, P.C. (2016). Effects of silver nanoparticles on bacterioplankton in a boreal lake. Freshw Biol. Vol. 61, pp. 2211–2220.
  27. Vincent, J.L., Paterson, M.J., Norman, B.C., Gray, E.P., Ranville, J.F., Scott, A.B., Frost, P.C., Xenopoulos, M.A. (2017) Chronic and pulse exposure effects of silver nanoparticles on natural lake phytoplankton and zooplankton. Ecotoxicology. Vol. 26, 502–515.
  28. Aiken, G.R., Hsu-Kim, H., Ryan, J.N. (2011). Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ Sci Technol. Vol. 45, pp. 3196–3201.
  29. Chae, Y., An, Y.J. (2016). Toxicity and transfer of polyvinylpyrrolidonecoated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish. Aquat Toxicol. Vol. 173, pp. 94–104.
  30. Sohn, E.K., Johari, S.A., Kim, T.G., Kim, J.K., Kim, E., Lee, J.H., Chung, Y.S., Yu, I.J. (2015). Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Biomed Res Int. 12 p.
  31. Helmlinger, J., Sengstock, C., Groß-Heitfeld, C., Mayer, C., Schildhauer, T.A., Köller, M., Epple, M. (2016). Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Adv. Vol. 6, pp. 18490–18501.
  32. Abramenko, N.B., Demidova, T.B., Abkhalimov capital Ie, C., Ershov, B.G., Krysanov, E.Y., Kustov, L.M. (2018). Ecotoxicity of different-shaped silver nanoparticles: case of zebrafish embryos. J Hazard Mater. Vol. 347, pp. 89–94.
  33. Yang, X., Gondikas, A.P., Marinakos, S.M., Auffan, M., Liu, J., Hsu-Kim, H., Meyer, J.N. (2012). Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol. Vol. 46, pp. 1119–1127.
  34. Huynh, K.A., Chen, K.L. (2011). Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol. Vol. 45, pp. 5564–5571.
  35. Angel, B.M., Batley, G.E., Jarolimek, C.V., Rogers, N.J. (2013. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere. Vol. 93, 359–365.
  36. Lau, B.L.T., Hockaday, W.C., Ikuma, K., Furman, O., Decho, A.W. (2013). A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics. Colloids Surf Physicochem Eng Asp. Vol. 435, pp. 22–27.
  37. Kittler, S., Greulich, C., Diendorf, J., Köller, M., Epple, M. (2010). Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater. Vol. 22, pp. 4548–4554.
  38. Zhang, W., Xiao, B., Fang, T. (2018). Chemical transformation of silver nanoparticles in aquatic environments: mechanism, morphology and toxicity. Chemosphere. Vol. 191, pp. 324–334.
  39. Nowack, B., Ranville, J.F., Diamond, S., Gallego-Urrea, J.A., Metcalfe, C., Rose, J., Horne, N., Koelmans, A.A., Klaine, S.J. (2012). Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem. Vol. 31, pp. 50–59.
  40. Li, L., Stoiber, M., Wimmer, A., Xu, Z., Lindenblatt, C., Helmreich, B., Schuster, M. (2016). To what extent can full-scale wastewater treatment plant effluent influence the occurrence of silver-based nanoparticles in surface waters? Environ Sci Technol. Vol. 50, pp. 6327–6333.
  41. Zhang, T., Lu, D., Zeng, L., Yin, Y., He, Y., Liu, Q., Jiang, G. (2017). Role of secondary particle formation in the persistence of silver nanoparticles in humic acid containing water under light irradiation. Environ Sci Technol. Vol. 51, pp. 14164–14172.
  42. Manoharan, V., Ravindran, A., Anjali, C.H. (2014). Mechanistic insights into interaction of humic acid with silver nanoparticles. Cell Biochem Biophys. Vol. 68, pp. 127–131.
  43. Zou, X., Shi, J., Zhang, H. (2015). Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: the roles of natural organic matter and light irradiation. J Hazard Mater. Vol. 292, pp. 61–69.
  44. Domingo, G., Bracale, M., Vannini, C. (2019). Phytotoxicity of silver nanoparticles to aquatic plants, algae, and microorganisms. In Nanomaterials in Plants, Algae and Microorganisms/ eds.: Durgesh, K.T., Parvaiz, A., Shivesh, S., Devendra, K.C., Nawal, K.D. Academic Press: Cambridge, MA, USA, pp. 143–168.
  45. Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T., Von der Kammer, F. (2014). Spot the Difference: Engineered and Natural Nanoparticles in the Environment-Release, Behavior and Fate. Angew. Chem. Int. Ed. Vol. 53, pp. 12398–12419.
  46. Zhang, W., Li, Y., Niu, J., Chen, Y. (2013). Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir. Vol. 29, pp. 4647–4651.
  47. Tkalec, M., Štefani´c, P.P., Balen, B. (2019). Phytotoxicity of silver nanoparticles and defence mechanisms. Analysis, Fate, and Toxicity of Engineered Nanomaterials. In Comprehensive Analytical Chemistry/ eds.: Sandeep, K.V., Ashok, K.D. Elsevier: Amsterdam, The Netherlands, Vol. 84, pp. 145–148.
  48. Turner, A., Brice, D., Brown, M.T. (2012). Interactions of silver nanoparticles with the marine macroalga, Ulvalactuca. Ecotoxicology. 21, pp. 148–154.
  49. Xiu, Z.M, Zhang, Q.B, Puppala, H.L., Colvin, V.L., Alvarez, P.J.J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 12, 427 p.
  50. Axson, J.L., Stark, D.I., Bondy, A.L., Capracotta, S.S., Maynard, A.D., Philbert, M.A., Bergin, I.L., Ault, A.P. (2015). Rapid kinetics of size and pHdependent dissolution and aggregation of silver nanoparticles in simulated gastric fluid. J Phys Chem C. Vol. 119. pp. 20632–20641.
  51. Colman, B.P., Espinasse, B., Richardson, C.J., Matson, C.W., Lowry, G.V., Hunt, D.E., Wiesner, M.R., Bernhardt, E.S. (2014). Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems. Environ Sci Technol. Vol. 48, pp. 5229–5236.
  52. Thalmann, B., Voegelin, A., Sinnet, B., Morgenroth, E., Kaegi, R. (2014). Sulfidation kinetics of silver nanoparticles reacted with metal sulfides. Environ Sci Technol. Vol. 48, pp. 4885–4892.
  53. Kaegi, R., Voegelin, A., Ort, C., Sinnet, B., Thalmann, B., Krismer, J., Hagendorfer, H., Elumelu, M., Mueller, E. (2013). Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res. Vol. 47, pp. 3866– 3877.
  54. Choi, O., Clevenger, T.E., Deng, B., Surampalli, R.Y., Ross, L. Jr., Hu, Z. (2009). Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res. Vol. 43, pp. 1879–1886.
  55. Chen, S., Goode, A.E., Sweeney, S., Theodorou, I.G., Thorley, A.J., Ruenraroengsak, P., Chang, Y., Gow, A., Schwander, S., Skepper, J., Zhang, J., Shaffer, M.S., Chung, K.F., Tetley, T.D., Ryan, M.P., Porter, A.E. (2013). Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism. Nanoscale. Vol. 5, pp. 9839–9847.
  56. Collin, B., Tsyusko, O.V., Starnes, D.L., Unrine, J.M. (2016). Effect of natural organic matter on dissolution and toxicity of sulfidized silver nanoparticles to Caenorhabditis elegans. Environ Sci Nano. 3, pp. 728–736.
  57. Doolette, C.L., McLaughlin, M.J., Kirby, J.K., Navarro, D.A. (2015). Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): effect of agricultural amendments on plant uptake. J Hazard Mater. Vol. 300, pp. 788–795.
  58. Zhang, W., Yao, Y., Li, K., Huang, Y., Chen, Y. (2011). Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles. Environ Pollut. Vol. 159, pp. 3757–3762.
  59. Zhang, W., Huang, J., Liang, L., Yao, L., Fang, T. (2019). Dual impact of dissolved organic matter on cytotoxicity of PVP-Ag NPs to Escherichia coli: mitigation and intensification. Chemosphere. Vol. 214, pp. 754–763.
  60. Römer, I., Wang, Z.W., Merrifield, R.C., Palmer, R.E., Lead, J. (2016). High resolution STEM-EELS study of silver nanoparticles exposed to light and humic substances. Environ Sci Technol. Vol. 50, pp. 2183–2190.
  61. Odzak, N., Kistler, D., Sigg, L. (2017). Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Environ Pollut. 226, pp. 1–11.
  62. Lowry, G.V., Espinasse, B.P., Badireddy, A.R., Richardson, C.J., Reinsch, B.C., Bryant, L.D., Bone, A.J., Deonarine, A., Chae, S., Therezien, M., Colman, B.P., Hsu Kim, H., Bernhardt, E.S., Matson, C.W., Wiesner, M.R. (2012). Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol. Vol. 46, pp. 7027– 7036.
  63. Sandra, F.G., Maria, D.P., Lopes, R., Hammes, J., Gallego-Urrea, J.A., Hassellov, M., Jurkschat, K., Crossley, A., Loureiro, S. (2017). Effects of silver nanoparticles on the freshwater snail Physaacuta: the role of test media and snails' life cycle stage. Environ Toxicol Chem. Vol. 36, pp. 243–253.
  64. Hu, Y., Chen, X., Yang, K., Lin, D. (2018). Distinct toxicity of silver nanoparticles and silver nitrate to Daphnia magna in M4 medium and surface water. Sci Total Environ. Vol. 618, pp. 838–846.
  65. Scanlan, L.D., Reed, R.B., Loguinov, A.V., Antczak, P., Tagmount, A., Aloni, S., Nowinski, D.T., Luong, P., Tran, C., Karunaratne, N., Pham, D., Lin, X.X., Falciani, F., Higgins, C.P., Ranville, J.F., Vulpe, C.D., Gilbert, B. (2013). Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS Nano. Vol. 7, pp. 10681–10694.
  66. Jiang, H.S., Yin, L., Ren, N.N., Xian, L., Zhao, S., Li, W., Gontero, B. (2017). The effect of chronic silver nanoparticles on aquatic system in microcosms. Environ Pollut. Vol. 223, pp. 395–402.
  67. Pokhrel, L.R., Dubey, B., Scheuerman, P.R. (2013). Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles. Environ Sci Technol. Vol. 47, pp. 12877–12885.
  68. Ribeiro, F., Van Gestel, C.A.M., Pavlaki, M.D., Azevedo, S., Soares, A., Loureiro, S. (2017). Bioaccumulation of silver in Daphnia magna: waterborne and dietary exposure to nanoparticles and dissolved silver. Sci Total Environ. Vol. 574, pp.1633–1639.
  69. Cleveland, D., Long, S.E., Pennington, P.L., Cooper, E., Fulton, M.H., Scott, G.I., Brewer, T., Davis, J., Petersen, E.J., Wood, L. (2012). Pilot estuarine mesocosm study on the environmental fate of silver nanomaterials leached from consumer products. Sci Total Environ. Vol. 421–422, pp. 267–272.
  70. Panzarini, E., Mariano, S., Vergallo, C., Carata, E., Fimia, G.M., Mura, F., Rossi, M., Vergaro, V., Ciccarella, G., Corazzari, M. (2017). Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells. Toxicol.Vitr. Vol. 41, pp. 64–74.
  71. Tsekhmistrenko, S., Bityutskii, V., Tsekhmistrenko, O., Horalskyi, L., Tymoshok, N., Spivak, M. (2020). Bacterial synthesis of nanoparticles: A green approach. Biosyst. Divers. Vol. 28(1), рр. 9–17.
  72. Vazquez-Munoz, R., Borrego, B., Juarez-Moreno, K. (2017). Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter. Toxicology Letters. Vol. 276, pp. 11–20.
  73. Cvjetko, P., Milosic, A., Domijan, A. (2017). Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicology and Environmental Safety. Vol. 137, pp. 18–28.
  74. McShan, D., Ray, C., Yu, H. (2014). Molecular Toxicity Mechanism of Nanosilver. Journal of Food and Drug Analysis. Vol. 22, no. 1, pp. 116–127.
  75. Silva, T., Pokhrel, L. R., Dubey, B., Tolaymat, T. M., Maier, K. J., Liu, X. (2014). Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: Comparison between general linear model-predicted and observed toxicity. Science of The Total Environment. Vol. 468–469, pp. 968–976.
  76. Zhao, C.M., Wang, W.X. (2012). Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicology. Vol. 6(4), pp. 361–70.
  77. Newton, K.M., Puppala, H.L., Kitchens, C.L., Colvin, V.L., Klaine, S.J. (2013). Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration. Environmental Toxicology and Chemistry. Vol. 32 (10), pp. 2356–2364.
  78. Lekamge, S., Miranda, A.F., Ball, A.S., Shukla, R., Nugegoda, D. (2019). The toxicity of coated silver nanoparticles to Daphnia carinata and trophic transfer from alga Raphidocelis subcapitata. Plos one. Vol. 14(4).
AttachmentSize
PDF icon vered_1_2021.pdf603.94 KB