You are here
The use of various forms of selenium in aquaculture
A study of the scientific literature on the use of nanotechnology methods for the cultivation of various aquaculture facilities has been generalized. The study was based on the addition of selenium to the diets of various shapes and origins.It is emphasized that modern scientific research on the use of nanoparticles in aquaculture emphasizes the accuracy of delivery and the appropriate number of trace elements, which in turn may reduce the cost of aquaculture products. It is pointed out that it is necessary to take into account the specifics of modern industrial aquaculture technologies, in which aquatic organisms are grown at high planting densities in pools, that means are constantly under stress, and one of the most common forms of stress leading to reduced productivity in aquaculture is oxidative stress. The review noted that selenium is one of the important micronutrients that can reduce the negative effects of oxidative stress. Studies by a number of authors on the positive effects of adding various forms of selenium to the diets of major aquaculture facilities have been analyzed. It is determined that biologically synthesized nanoselenium can be added to various commercial fish feeds to increase stress resistance and productivity of aquatic organisms, in addition, this product will meet the environmental needs of consumers. The advantage of using organic forms of selenium in aquaculture over inorganic ones has been established, as the former have higher bioavailability and better accumulation in fish tissues. A number of studies related to the determination of the toxic effects of various forms of selenium and its concentrations on aquatic organisms have been studied. It is emphasized that in aquaculture it is necessary to take into account that selenium particles must be non-toxic not only for the biological object itself, but also for other systems that are closely related to its vital activity.
Key words: selenium, nanotechnology, aquaculture, fish, stress resistance, toxicity, growth rate, physiological indicators, immunological indicators.
- Shah, B. R., Mraz, J. (2020). Advances in nanotechnology for sustainable aquaculture and fisheries. Reviews in Aquaculture. Vol. 12 (2), pp. 925–942. Available at:https://doi.org/ 10.1111/raq.12356.
- Aklakur, Md., Rather, A.M., Kumar, N. (2016). Nanodelivery: an emerging avenue for Nutraceuticals and drug delivery. Crit Rev Food Sci Nutr. Vol. 56(14), pp. 2352–2361. Available at:https://doi.org/10.1080/10408398.2013.839543
- Kumari, A., Yadav, SK. (2014). Nanotechnology in agri‐food sector. Critical Reviews In Food Science and Nutrition. Vol. 54, pp. 975–984. Available at:https://doi. org/10.1080/10408398. 2011.621095.
- Rodrigues, S.M., Demokritou, P., Dokoozlian, N., Hendren, C.O., Karn, B., Mauter, M.S. (2017). Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environmental Science. Nano 4, pp. 767–781. Available at:https://scholar. google.com/ scholar?cites=700762521879206503 &as_ sdt=2005&sciodt=0,5&hl=uk.
- Bityutskyy, V. S., Tsekhmistrenko,О. S., Tsekhmistrenko, S. I., Spyvack, M. Y., Shadura, U. M. (2019). Perspectives of cerium nanoparticles use in agriculture. The Animal Biology. Vol. 19 (3), pp. 9–17. Available at:https:// doi.org/ 10.15407/animbiol19.03.009.
- Bityutskyy, V., Tsekhmistrenko, S., Tsekhmistrenko, O., Oleshko, O.A., Heiko, L.M. (2020). Influence of selenium on redox processes, selenoprotein metabolism and antioxidant status of aquaculture facilities. Tavriiskyi naukovyi visnyk [Taurian Scientific Bulletin]. Silskohospodarski nauky [Agricultural sciences]. Issue 114, pp. 231–240. Available at:https:// doi.org/10.32851/2226-0099.2020.114.28.
- Tsekhmistrenko, S. I., Bityutskyy, V. S., Tsekhmistrenko, O. S., Polishchuk, V. M., Polishchuk, S. A., Ponomarenko, N. V., Melnychenko, Y. O., Spivak M. Y. (2018). Enzyme-like activity of nanomaterials. Regulatory Mechanisms in Biosystems. Vol. 9(3), pp. 469–476. Available at:https://doi.org/10.15421/021870.
- Chen, H., Seiber, J. N., Hotze, M. (2014). ACS select on nanotechnology infood and agriculture: A perspective on implications and applications. Journal Agricultural and Food Chemistry. Vol. 62(6), pp. 1209–1212. Available at:https:// doi.org/10.1021/jf5002588.
- Fu, P. P. (2014). Introduction to the special issue: Nanomaterials-toxicology andmedical applications. Journal of Food and Drug Analysis. Vol. 22(1), pp. 1–2. Available at:https: //doi.org/10.1016/j.jfda.
- Lu, L., Wang, X., Xiong, C.,Yao, L. (2015). Recent advances in biologicaldetection with magnetic nanoparticles as a useful tool. Science China Chemistry. Vol. 58(5), pp. 793–809. Available at:https://doi.org/10.1007/s11426-015- 5370-5.
- Li, M., Zhang, C. (2016). y-Fe2O3 nanoparticlefacilitated bisphenol A degradation by white rot fungus. Science Bulletin. Vol. 61(6), pp. 468–472. Available at:https:// doi.org/ 10.1007/s11434-016-1021-2.
- Maqusood, A., AlSalhi, M., Siddiqu, M.K.J. (2010). Silver nanoparticle applications and human health. Clinica Chimica Acta. Vol. 411, pp. 1841–1848. Available at:https:// doi.org/ 10.1016/j.cca.2010.08.016
- Ashraf, M., Aklakur, Md., Sharma, R., Ahmad, S., Khan, M. (2011). Nanotechnology as a Novel Tool in Fisheries and Aquaculture Development: A Review. Iranica Journal of Energy & Environment. Vol. 2 (3), pp. 258–261. Available at:https://doi.org/10.5829/idosi.ijee.2011.02.03. 2272.
- Tsekhmistrenko, O.S., Bityutskyy, V.S., Tsekhmistrenko, S.I., Kharchishin, V.M., Melnichenko,O.M., Rozputnyy, O.I., Malina, V.V., Prysiazhniuk, N.M., Melnichenko, Y.О., Vered, P.I., Shulko, O.P., Onyshchenko, L.S. (2020). Nanotechnologies and environment: A review of pros and cons. Ukrainian Journal of Ecology. Vol. 10(3), pp. 162–172. Available at:https://doi.org/ 10.15421/2020_149.
- Tsekhmistrenko, S., Bityutskii, V., Tsekhmistrenko, O., Horalskyi, L., Tymoshok, N., Spivak, M. (2020). Bacterial synthesis of nanoparticles: Agreen approach. Biosyst. Divers. Vol. 28(1), pp. 9–17. Available at:https://doi. org/10.15421/012002.
- Tymoshok, N., Kharchuk, М., Kaplunenko, V., Bityutskii, V., Tsekhmistrenko, S., Tsekhmistrenko, O., Spivak, M., Melnichenko, Y. (2019). Evaluation of effects of selenium nanoparticles on Bacillus subtilis. Regul. Mech. Biosyst. Vol. 10(4), pp. 544–552. Available at:https://doi. org/10.15421/021980.
- Cehmistrenko, O. S., Bitjuc'kyj, V. S., Cehmistrenko, S. I. (2020). “Zeleni” tehnologii' u syntezi nanochastynok selenu: materialy I mizhnarodnoi' naukovo-praktychnoi' internet-konferencii', 28-29 travnja 2020 r ["Green" technologies in the synthesis of selenium nanoparticles: materials of the I International Scientific and Practical Internet Conference, May 28-29, 2020]. Dnipro, Vol. 2, 611 p.
- Gopi, M., Pearlin, B., Kumar, R. D., Shanmathy, M., Prabakar, G. (2017). Role of nanoparticles in animal and poultry nutrition: Modes of action and applications in formulating feed additives and food processing. Int. J. Pharmacol. Vol. 13, pp. 724–731. Available at: https://doi. org/ 10.3923/ijp.2017.724.731.
- Nature Nanotechnology Release. Nanomaterials definition matters. Nature Nanotechnology. (2019). Vol. 14, 193 p. Available at:https://doi.org/10.1038/s 41565-019- 0412-3
- Boverhof, D.R., Bramante, C.M., Butala, J.H., Clancy, S.F., Lafranconi, M., West, J. (2015). Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regulatory Toxicology and Pharmacology. Vol. 73, pp. 137–150. Available at:https://doi.org/ 10.1016/ j.yrtph.2015.06.001.
- Biplab, S., Surajit, B., Akshay, D., Prosun, T., Krishnani, K. K., Minhas, P. S. (2015). Selenium Nanoparticles for Stress-Resilient Fish and Livestock. Nanoscale Research Letters. Vol. 10, 371 p. Available at:https://doi.org/10.1186/ s11671-015-1073-2.
- Аpel, K., Hirt, H. (2004). Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology. Vol. 55, pp. 373–379. Available at:https: //doi.org/10.1146/annurev. arplant.55.031903.141701
- Vítová, M., Bišová, K., Hlavová, M., Zachleder, V., Rucki, M., Čížková, M. (2011). Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. Aquat. Toxicol. Vol. 102, no. 1-2, pp. 87–94. Available at: https://doi.org/ 10.1016/j.aquatox.2011.01.003.
- Mykhailenko, N.F. (2016). Growth and photosynthetic activity of green algae Chlorella vulgaris Beijer in the presence of selenium nanoaquachelates. Microbiology & Biotechnology. Vol. 2, no. 34, pp. 6–15. Available at: http:// doi.org/10.18524/2307-4663.2016.2(34).70746.
- Sarkar, B., Bhattacharjee, S., Daware, A., Tribedi, P., Krishnani, K. K., Minhas, P. S. (2015). Selenium nanoparticles for stress-resilient fish and livestock. Nanoscale research letters. Vol. 10, no. 1, 371 p. Available at: https://doi. org/10.1186/s11671-015-1073-2.
- Song, D., Cheng,Y., Li X., Wang, F., Lu, Z., Xiao, X., Wang, Y. (2017). Biogenic nanoselenium particles effectively attenuate oxidative stress-induced intestinal epithelial barrier injury by activating the Nrf2 antioxidant pathway. ACS applied materials & interfaces. Vol. 9, no. 17, pp. 14724– 14740. Available at: https://doi.org/10.1021/acsami.7b03377.
- Singha, S., Das, K., Jha, N. (2017). Nano-Systems for Micro-Nutrient Delivery in Aquaculture: A Critical Analysis. Ann Aquac Res. Vol. 4, no. 4, 1046 p. Available at: https://www. jscimedcentral.com/Aquaculture/aquaculture-4-1046.pdf.
- Xuxia, Zhou., Yanbo, Wang., Qing, Gu., Weifen, Li. (2009). Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture. Vol. 291, no. 1–2, pp. 78–81. Available at:https://doi.org/10.1016/j.aquaculture.2009. 03.007.
- Akhtar, N., Saeed, K., Khan, J.S., Khan, A., Akhtar, W., Akhtar, B. (2016). Tor Putitora, the Extinct Fish Species in River Swat Khyber Pakhtunkhwa, Pakistan. World Journal of Fish and Marine Sciences. Vol. 8, no. 1, pp. 10–13. Available at: https://doi.org/10.5829/idosi.wjfms.2016.8.1.10247.
- Khan, K.U., Zuber, A., Nazir, S., Fernandes, J.B.K., Jamil, Z., Sarwar, H. (2016). Effects of dietary selenium nanoparticles on physiological and biochemical aspects of juvenile Tor putitora. Turk J Zool. Vol. 40, pp. 704–712. Available at: https://doi.org/10.3906/zoo-1510-5.
- Khan, K.U., Zuber, A., Nazir, S., Ullah, I., Zeenat, J., Sarwar, H. (2017). Synergistic effects of dietary nano selenium and vitamin C on growth, feeding, and physiological parameters of mahseer fish (Tor putitora). Aquaculture Reports. Vol. 5, pp. 70–75. Available at:https://doi.org/ 10.1016/j.aqrep.2017.01.002.
- Khosravi-Katuli, K., Prato, E., Lofrano, G. (2017). Effects of nanoparticles in species of aquaculture interest. Environ Sci Pollut Res Int. Vol. 24, 17326 p. Available at:https://doi.org/ 10.1007/s11356-017-9360.
- Swain, P., Das, R., Das, A., Padhi, S.K., Das, K.C., Mishra, S.S. (2018). Effects of dietary zinc oxide and selenium nanoparticles on growth performance, immune responses and enzyme activity in rohu, Labeo rohita (Hamilton). Aquacult. Nut. pp. 1–9. Available at:https:// doi.org/10.1111/anu.12874.
- Xia, I. F., Cheung, J. S., Wu, M., Wong, K. S., Kong, H. K., Zheng, X. T., Kwok, K.W. (2019). Dietary chitosanselenium nanoparticle (CTS-SeNP) enhance immunity and disease resistance in zebrafish. Fish&shellfish immunology. Vol. 87, pp. 449–459. Available at:https:// doi.org/10.1016/j. fsi.2019.01.042.
- Wang, J., Zhang, Y., Yuan, Y., Yue, T. (2014). Immunomodulatory of selenium nano-particles decorated by sulfated Ganoderma lucidum polysaccharides. Food and chemical toxicology. Vol. 68, pp. 183–189. Available at:http:// ir.nsfc.gov.cn/paperDownload/ 1000008779101.pdf.
- Bityutsky, V. S., Tsekhmistrenko, S. I., Tsekhmistrenko, О. S., Tymoshok, N. O., Spivak, M.Y. (2020). Regulation of redox processes in biological systems with the participation of the Keap1/Nrf2/ARE signaling pathway, biogenic selenium nanoparticles as Nrf2 activators. Regul. Mech. Biosyst. Vol. 11, no. 4. Available at: https://doi. org/10.1016/b978-0-12-405882-8.00004-0.
- Ahmed, S. M. U., Luo, L., Namani, A., Wang, X. J., Tang, X. (2017). Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica et Biophysica Acta (BBA)- Molecular Basis of Disease. Vol. 1863, no. 2, pp. 585–597. Available at: https://doi.org/10.1016/j.bbadis.2016.11.005.
- Durigon, E. G., Kunz, D. F., Peixoto, N. C., Uczay, J., Lazzari, R. (2018). Diet selenium improves the antioxidant defense system of juveniles Nile tilapia (Oreochromis niloticus L.). Brazilian Journal of Biology, (AHEAD). Vol. 79, no. 3. Available at:https://doi.org/10.1590/1519- 6984.187760.
- Ashouri, S., Keyvanshokooh, S., Salati, A. P., Johari, S. A., Pasha-Zanoosi, H. (2015). Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composite Aquaculture. Vol. 446, pp. 25–29. Available at: https://doi.org/10.1111/anu.12428.
- Saffari, S., Keyvanshokooh, S., Zakeri, M., Johari, S. A., Pasha‐Zanoosi, H. (2017). Effects of different dietary selenium sources (sodium selenite, selenomethionine and nanoselenium) on growth performance, muscle composition, blood enzymes and antioxidant status of common carp (Cyprinus carpio). Aquaculture nutrition. Vol. 23, no. 3, pp. 611–617. Available at:https:// doi.org/10.1111/anu.12428.
- lia, A. C., Prearo, M., Pacini, N., Dörr, A. J. M., Abete, M. C. (2011). Effects of selenium diets on growth, accumulation and antioxidant response in juvenile carp. Ecotoxicology and Environmental Safety. Vol. 74, no. 2, pp. 166–173. Available at:https://doi.org/10.1016/j. ecoenv.2010.04.006.
- Khalil, H. S., Mansour, A. T., Goda, A. M. A., Omar, E. A. (2019). Effect of selenium yeast supplementation on growth performance, feed utilization, lipid profile, liver and intestine histological changes, and economic benefit in meagre, Argyrosomus regius, fingerlings. Aquaculture. Vol. 501, pp. 135–143. Available at:https://doi.org/10.1016/j. aquaculture.2018.11.018.
- Pacitti, D., Lawan, M. M., Feldmann, J., Sweetman, J., Wang, T., Martin, S. A. M., Secombes, C. J. (2016). Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of SelPlex®. BMC genomics. Vol. 17, no. 1, 116 p. Available at:https://doi.org/10.1186/s12864-016-2418-7.
- Dawood, M. A., Koshio, S., Zaineldin, A. I., Van Doan, H., Moustafa, E. M., Abdel-Daim, M. M., Hassaan, M. S. (2019). Dietary supplementation of selenium nanoparticles modulated systemic and mucosal immune status and stress resistance of red sea bream (Pagrus major). Fish physiology and biochemistry. Vol. 45, no. 1, pp. 219–230. Available at: https://doi.org/10.1007/s 10695-018-0556-3.
- Khosravi-Katuli, K., Prato, E., Lofrano, G. (2017). Effects of nanoparticles in species of aquaculture interest. Environ Sci Pollut Res Int. Vol. 24, 17326 p. Available at: https://doi.org/ 10.1007/s11356-017-9360-3.
- Márquez, J. С. M., Partida, A. H., Dosta, M. C. M., Mejía, J. C. Martínez, J. A. B. (2018). International Journal of Fisheries and Aquatic Studies. Vol. 6, no. 2, pp. 5–11. E-ISSN: 2347-5129 P-ISSN: 2394-0506.
- Vaishnavi, AS., Mangala Gowri, A., Valli, C., Meenambigai, T.V., Baskaran, D. (2019). Assessment of nano selenium effect in developing zebra fish embryos. Journal of Entomology and Zoology Studies. Vol. 7, no. 1, pp. 914–917. E-ISSN: 2320-7078 P-ISSN: 2349-6800.
- Lacave, J.M., Retuerto, A., Vicario-Parés, U., Gilliland, D., Oron, M., Cajaraville, M.P., Orbea, A. (2016). Effects of metal-bearing nanoparticles (Ag, Au, CdS, ZnO, SiO2) on developing zebrafish embryos. Nanotechnology. Vol. 27, no. 32, 325102 p. Available at:https://doi.org/ 10.1088/0957-4484/27/32/325102.
- Raza, S., Hanif, S., Tahir, A. (2017). Role of nanotechnology in agriculture. European Journal of Pharmaceutical and Medical Research. Vol. 4, no. 5, pp. 138– 143. ISSN 2394-3211.
- Röhder, L.A. (2014). Interactions of Cerium Dioxide Nanoparticles with the Green Alga Chlamydomonas Reinhardtii: Influence of Physico-chemical Characteristics and Cerium(III). ETH-Zürich. 111 p. Available at: https://doi. org/10.1016/j.aquatox.2014.03.0.
- Hong, S. J., Liyan, Y., Ren, N., N., Ling, X., Suting, Z., Wei, L., Gontero, B. (2017). The effect of chronic silver nanoparticles on aquatic system in microcosms. Environmental Pollution. Vol. 223, pp. 395–402. Available at: https://doi.org/10.1016/j.envpol.2017.01.036.
- Dobrochna, A., Jerzy, Ś., Teresa, O., Magda, F., Małgorzata, R., Yuichiro, M., Kacper, M. (2018). Turkish Journal of Fisheries and Aquatic Sciences. Vol. 18, pp. 781–788. Available at: https://doi.org/10.4194/1303-2712-v18_6_04.
- Berntssen, M. H. G., Sundal, T. K., Olsvik, P. A., Amlund, H., Rasinger, J. D., Sele, V., Ørnsrud, R. (2017). Sensitivity and toxic mode of action of dietary organic and inorganic selenium in Atlantic salmon (Salmo salar). Aquatic toxicology. Vol. 192, pp. 116–126. Available at: https://doi. org/10.1016/j.aquatox.2017.09.014.
- Berntssen, M. H., Betancor, M., Caballero, M. J., Hillestad, M., Rasinger, J., Hamre, K., Ørnsrud, R. (2018). Safe limits of selenomethionine and selenite supplementation to plant-based Atlantic salmon feeds. Aquaculture. Vol. 495, pp. 617–630. Available at:https://doi.org/10.1016/j. aquaculture.2018.06.041.
- Sele, V., Ørnsrud, R., Sloth, J. J., Berntssen, M. H., Amlund, H. (2018). Selenium and selenium species in feeds and muscle tissue of Atlantic salmon. Journal of Trace Elements in Medicine and Biology. Vol. 47, pp. 124–133. Available at:https://doi.org/10.1016/j. jtemb.2018.02.005.
- Betancor, M. B., Dam, T. M., Walton, J., Morken, T., Campbell, P. J., Tocher, D. R. (2016). Modulation of selenium tissue distribution and selenoprotein expression in Atlantic salmon (Salmo salar L.) fed diets with graded levels of plant ingredients. British Journal of Nutrition. Vol. 115, no. 8, pp. 1325–1338.
- Kouba, A., Velíšek, J., Stará, A., Masojídek, J., Kozák, P. (2014). Supplementation with sodium selenite and selenium-enriched microalgae biomass show varying effects on blood enzymes activities, antioxidant response, and accumulation in common barbel (Barbus barbus). BioMed research international. ID 408270, 8 p. Available at: https:// doi.org/10.1155/2014/408270.
- Fontagné-Dicharry, S., Godin, R., Le, K. T., Fotedar, R. (2014). Bioavailability of selenium from different dietary sources in yellowtail kingfish (Seriola lalandi). Aquaculture. Vol. 420, pp. 57–62. Available at:https://doi.org/10.1016/j. aquaculture.2013.10.034.
- EFSA, Scientific opinion on dietary reference values for selenium, EFSA J., Parma, Italy. (2014). 67 p.
- EFSA, Scientific Opinion on Safety and Efficacy of Selenium in the Form of Organic Compounds Produced by the Selenium-enriched Yeast Saccharomyces Cerevisiae NCYC R646 (Selemax 1000/2000) as Feed Additive for All Species, The European Food Safety Authority (EFSA) Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Parma, Italy. (2012). 17 p.
- EFSA, Scientific opinion on safety and efficacy of Sel-Plex® (organic form of sele- nium produced by saccharomyces cerevisiae CNCM I-3060) for all species. The European Food Safety Authority (EFSA) Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). (2011). 52 p.
- EFSA, Scientific opinion on the safety and efficacy of selenium in the form of or- ganic compounds produced by the selenium-enriched yeast Saccharomyces cere- visiae NCYC R645 (SelenoSource AF 2000) for all species. The European Food Safety Authority (EFSA) Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). (2011). pp. 15,57.
- Kumar, N., Krishnani, K. K., Singh, N. P. (2018). Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environmental Science and Pollution Research. Vol. 25, no. 9, pp. 8914–8927. Available at:https://doi.org/ 10.1007/s11356-017-1165-x.
Attachment | Size |
---|---|
oleshko_1_2021.pdf | 541.45 KB |