You are here

Use of agricultural production waste in relation to bio nano technology for the synthesis of functionalized selenium nanoparticles

The application of nanotechnological innovations to increase the effectiveness of the bioflavonoid quercetin is considered. The ability to functionalize with specific ligands that target specific organs or cells is very important because it is possible to increase the concentration of quercetin at the desired target level while reducing side effects. Quercetin, as a flavonoid antioxidant, is widely used to reduce oxidative stress and activate important signalling pathways in cells. However, poor solubility in water, intensive first-pass metabolism limits its use. A strategy for the development of nanocomposites is presented, which involves combining quercetin obtained from agricultural waste with selenium nanoparticles. In vitro results demonstrated that quercetin-nanoselenium has high water solubility compared to individual flavonoids. It has been proven that quercetin-nano-selenium nanoparticles are capable of reducing 1,1-dipheny l-2-picrylhydrazyl (DPPH) radicals and are characterized by high antioxidant activity. The ability to functionalize nanoparticles with specific ligands that target the modulation of specific signaling pathways (Keap1/ Nrf2/ARE, Nf-kB, mTOR) in individual cells is very important, as it allows increasing the concentration of quercetin to the desired level while reducing side effects. Considering the beneficial effects of quercetin, a strategy has been developed that involves the use of selenium nanoparticles to deliver quercetin in a specific and controlled manner. Research in this direction is promising, as it will contribute to clarifying the expediency of using such nanosystems, which have not yet been widely used. The use of onion waste and its extracts in biotechnology, biomedicine, pharmaceuticals and the agro-industrial sector can be an optimal solution for reducing environmental damage. In addition, it will provide an economically determined alternative for the production of feed additives for animals and poultry. Compounds of quercetin with nanoselenium should take a worthy place in clinical medical practice, biology and agriculture. The beneficial effects of quercetin can be further enhanced with the help of nanotechnology, which will contribute to the effective use of this compound with such great biological potential.

Key words: nanobiotechnologies, waste, onion peel, 1,1-dipheny l- 2-picrylhydrazyl, antiradical activity.

  1. Abdullah, H.S.T.S.H., Asseri, S.N.A.R.M., Mohamad, W.N.K.W., Kan, S.Y., Azmi, A.A., Julius, F.S.Y., Chia, P.W. (2021). Green synthesis, characterization and applications of silver nanoparticle mediated by the aqueous extract of red onion peel. Environmental Pollution, 271, 116295 p. DOI:10.1016/j. envpol.2020.116295
  2. Benítez, V., Mollá, E., Martín-Cabrejas, M.A., Aguilera, Y., López-Andréu, F. J., Cools, K., Esteban, R. M. (2011). Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds. Plant foods for human nutrition. 66(1), pp. 48–57. DOI:10.1007/s11130-011-0212-x
  3. Bibi Sadeer, N., Montesano, D., Albrizio, S., Zengin, G., Mahomoodally, M. F. (2020). The versatility of antioxidant assays in food science and safety – Chemistry, applications, strengths, and limitations. Antioxidants, 9(8), 709 p. DOI:10.3390/antiox9080709
  4. Bityutsky, V.S., Tsekhmistrenko, S.I., Tsekhmistrenko, О.S., Tymoshok, N.O., Spivak, M.Y. (2020). Regulation of redox processes in biological systems with the participation of the Keap1/Nrf2/ARE signaling pathway, biogenic selenium nanoparticles as Nrf2 activators. Regulatory Mechanisms in Biosystems. 11(4), pp. 483–493. DOI:10.15421/022074
  5. Bityutskyy, V., Tsekhmistrenko, S., Tsekhmistrenko, O., Oleshko, O.A., Heiko, L.M. (2020). Influence of selenium on redox processes, selenoprotein metabolism and antioxidant status of aquaculture facilities. Taurian Scientific Bulletin. Agricultural sciences. Issue 114, pp. 231–240. DOI:10.32851/2226- 0099.2020.114.28 (in Ukrainian)
  6. Borges Bubols, G., da Rocha Vianna, D., Medina-Remon, A., von Poser, G., Maria Lamuela-Raventos, R., Lucia Eifler-Lima, V., Cristina Garcia, S. (2013). The antioxidant activity of coumarins and flavonoids. Mini reviews in medicinal chemistry. 13(3), pp. 318–334. DOI:10.2174/ 138955713804999775
  7. Borghi, S.M., Mizokami, S.S., Pinho-Ribeiro, F.A., Fattori, V., Crespigio, J., Clemente-Napimoga, J.T., Verri Jr, W.A. (2018). The flavonoid quercetin inhibits titanium dioxide (TiO2)-induced chronic arthritis in mice. The Journal of Nutritional Biochemistry, 53, pp. 81–95. DOI:10. 1016/j.jnutbio. 2017.10.010
  8. Cao, J.H., Xue, R., He, B. (2021). Quercetin protects oral mucosal keratinocytes against lipopolysaccharide-induced inflammatory toxicity by suppressing the AKT/A. pp. 519–526. DOI:10.1080/08923973 .2021.1948565
  9. Casagrande, R., Georgetti, S.R., Verri Jr, W.A., Dorta, D.J., dos Santos, A.C., Fonseca, M.J. (2006). Protective effect of topical formulations containing quercetin against UVB-induced oxidative stress in hairless mice. Journal of Photochemistry and Photobiology B: Biology, 84(1), pp. 21–27. DOI:10.1016/j. jphotobiol.2006.01.006
  10. Cho, S.Y., Park, S.J., Kwon, M.J., Jeong, T.S., Bok, S.H., Choi, W.Y., Jeong, K.S. (2003). Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-κB pathway in lipopolysaccharide-stimulated macrophage. Molecular and cellular biochemistry, 243(1), pp. 153–160. DOI:10.1023/A:1021624520740
  11. Cos, P., Ying, L., Calomme, M., Hu, J.P., Cimanga, K., Van Poel, B., Berghe, D.V. (1998). Structure- activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. Journal of natural products, 61(1), pp. 71– 76. DOI:10.1021/np970237h
  12. Črnivec, I.G.O., Skrt, M., Šeremet, D., Sterniša, M., Farčnik, D., Štrumbelj, E., Ulrih, N.P. (2021). Waste streams in onion production: Bioactive compounds, quercetin and use of antimicrobial and antioxidative properties. Waste Management, 126, pp. 476– 486. DOI:10.1016/j.wasman.2021.03.033
  13. Domiciano, T.P., Wakita, D., Jones, H.D., Crother, T.R., Verri, W.A., Arditi, M., Shimada, K. (2017). Quercetin inhibits inflammasome activation by interfering with ASC oligomerization and prevents interleukin-1 mediated mouse vasculitis. Scientific reports. 7(1), pp. 1–11. DOI:10.1038/srep41539
  14. Dong, H., Quintilla, A., Cemernjak, M., Popescu, R., Gerthsen, D., Ahlswede, E., Feldmann, C. (2014). Colloidally stable selenium@ copper selenide core@ shell nanoparticles as selenium source for manufacturing of copper–indium–selenide solar cells. Journal of colloid and interface science, 415, pp. 103–110. DOI:10.1016/j.jcis.2013.10.001
  15. Ferrali, M., Signorini, C., Caciotti, B., Sugherini, L., Ciccoli, L., Giachetti, D., Comporti, M. (1997). Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS letters, 416(2), pp. 123– 129. DOI:10. 1016/S0014-5793(97)01182-4
  16. Ferraz, C.R., Carvalho, T.T., Manchope, M.F., Artero, N.A., Rasquel-Oliveira, F.S., Fattori, V., Verri Jr, W.A. (2020). Therapeutic potential of flavonoids in pain and inflammation: mechanisms of action, pre-clinical and clinical data, and pharmaceutical development. Molecules. 25(3), 762 p. DOI:10.3390/molecules 25030762
  17. Ferraz, C.R., Silva, D.B., Prado, L.C.D.S., Canabrava, H.A.N., Bispo-da-Silva, L.B. (2019). Antidiarrhoeic effect and dereplication of the aqueous extract of Annona crassiflora (Annonaceae). Natural product research, 33(4), pp. 563–567. DOI:10.1080/14786419.2017. 1396589
  18. Guazelli, C.F., Fattori, V., Colombo, B.B., Georgetti, S.R., Vicentini, F.T., Casagrande, R., Verri Jr, W.A. (2013). Quercetin-loaded microcapsules ameliorate experimental colitis in mice by anti-inflammatory and antioxidant mechanisms. Journal of natural products, 76(2), pp. 20–208. DOI:10.1021/ np300670w
  19. Guazelli, C.F., Staurengo-Ferrari, L., Zarpelon, A.C., Pinho-Ribeiro, F.A., Ruiz-Miyazawa, K.W., Vicentini, F.T., Verri Jr, W.A. (2018). Quercetin attenuates zymosan-induced arthritis in mice. Biomedicine & pharmacotherapy, 102, pp. 175–184. DOI:10.1016/j.biopha. 2018.03.057
  20. Heim, K.E., Tagliaferro, A.R., Bobilya, D.J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of nutritional biochemistry, 13(10), pp. 572–584. DOI:10.1016/S0955-2863(02)00208-5
  21. Hirano, R., Sasamoto, W., Matsumoto, A., Itakura, H., Igarashi, O., Kondo, K. (2001). Antioxidant ability of various flavonoids against DPPH radicals and LDL oxidation. Journal of nutritional science and vitaminology, 47(5), pp. 357–362. DOI:10.3177/ jnsv.47.357
  22. Ho, C.T., Kim, J.W., Kim, W.B., Song, K., Kanaly, R.A., Sadowsky, M.J., Hur, H.G. (2010). Shewanella-mediated synthesis of selenium nanowires and nanoribbons. Journal of Materials Chemistry, 20(28), pp. 5899–5905. DOI:10.1039/ C0JM00690D
  23. Katsampa, P., Valsamedou, E., Grigorakis, S., Makris, D.P. (2015). A green ultrasound-assisted extraction process for the recovery of antioxidant polyphenols and pigments from onion solid wastes using Box–Behnken experimental design and kinetics. Industrial Crops and Products, 77, pp. 535–543. DOI:10.1016/j.indcrop.2015.09.039
  24. Kumar, M., Barbhai, M.D., Hasan, M., Punia, S., Dhumal, S., Rais, N., Mekhemar, M. (2022). Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomedicine & Pharmacotherapy, 146, 112498 p. DOI:10.1016/j.biopha.2021.112498
  25. Kwak, J.H., Seo, J.M., Kim, N.H., Arasu, M.V., Kim, S., Yoon, M.K., Kim, S.J. (2017). Variation of quercetin glycoside derivatives in three onion (Allium cepa L.) varieties. Saudi Journal of Biological Sciences, 24(6), pp. 1387–1391. DOI:10.1016/j. sjbs.2016.05.014
  26. Lee, H.N., Shin, S.A., Choo, G.S., Kim, H.J., Park, Y.S., Kim, B.S., Jung, J.Y. (2018). Anti-inflammatory effect of quercetin and galangin in LPS-stimulated RAW264. 7 macrophages and DNCB-induced atopic dermatitis animal models. International Journal of Molecular Medicine, 41(2), pp. 888–898. DOI:10.3892/ ijmm.2017.3296
  27. Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M.T., Wang, S., Yin, Y. (2016). Quercetin, inflammation and immunity. Nutrients, 8(3), pp. 167–181. DOI:10.3390/nu8030167
  28. Lotito, S.B., Frei, B. (2006). Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon?. Free Radical Biology and Medicine, 41(12), pp. 1727–1746. DOI:10.1016/j.freeradbiomed.2006.04.033
  29. Nijveldt, R.J., Van Nood, E.L.S., Van Hoorn, D.E., Boelens, P.G., Van Norren, K., Van Leeuwen, P.A. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. The American journal of clinical nutrition, 74(4), pp. 418–425. DOI:10.1093/ajcn/ 74.4.418
  30. Pandian, S., Kunjiappan, S., Ravishankar, V., &Sundarapandian, V. (2021). Synthesis of quercetin-functionalized silver nanoparticles by rapid onepot approach. Bio Technologia, 102(1), pp. 75–84. DOI:10.5114/bta.2021.103764
  31. Phukan, K., Devi, R., Chowdhury, D. (2021). Green synthesis of gold nano-bioconjugates from onion peel extract and evaluation of their antioxidant, anti-inflammatory, and cytotoxic studies. ACS omega, 6(28), pp. 17811–17823. DOI:10.1021/acsomega.1c00861
  32. Pietta, P.G. (2000). Flavonoids as antioxidants. Journal of natural products, 63(7), pp. 1035– 1042. DOI:10.1021/np9904509
  33. Pinheiro, R.G., Pinheiro, M., Neves, A.R. (2021). Nanotechnology innovations to enhance the therapeutic efficacy of quercetin. Nanomaterials. 11(10), 2658 p. DOI:10.3390/ nano11102658
  34. PonMatheswari, P., Jenit Sharmila, G., Murugan, C. (2022). Green synthesis of selenium nanoparticles using Delonix regia and Nerium oleander flower extract and evaluation of their antioxidant and antibacterial activities. Inorganic and Nano-Metal Chemistry, pp. 1–12. DOI:10.1080/24701556.2021.2025099
  35. Prior, R.L., Cao, G. (2000). Antioxidant phytochemicals in fruits and vegetables: diet and health implications. Hort Science, 35(4), pp. 588–592. DOI:10.21273/HORTSCI.35.4.588
  36. Procházková, D., Boušová, I., Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 82(4), pp. 513–523. DOI:10.1016/j. fitote.2011.01.018
  37. Qi, Y., Yi, P., He, T., Song, X., Liu, Y., Li, Q., Zhang, Y. (2020). Quercetin-loaded selenium nanoparticles inhibit amyloid-β aggregation and exhibit antioxidant activity. Colloids and surfaces A: physicochemical and Engineering Aspects. 602, 125058 p. DOI:10.1016/j.colsurfa. 2020.125058
  38. Rawat, K.A., Kailasa, S.K. (2014). Visual detection of arginine, histidine and lysine using quercetin-functionalized gold nanoparticles. Microchimica Acta, 181(15), pp. 1917–1929. DOI:10. 1007/s00604- 014-1294-6
  39. Singh, S., Nagalakshmi, D., Sharma, K.K., Ravichandiran, V. (2021). Natural antioxidants for neuroinflammatory disorders and possible involvement of Nrf2 pathway: A review. Heliyon, 7(2), e06216. DOI:10.1016/j.heliyon.2021.e06216
  40. Tsekhmistrenko, O., Bityutskyy, V., Tsekhmistrenko, S., Melnichenko, O., Tymoshok, N., Spivak, M. (2019). Use of nanoparticles of metals and non-metals in poultry farming. Animal Husbandry Products Production and Processing. 2, pp. 113–130. (in Ukrainian)
  41. Tsekhmistrenko, O., Tsekhmistrenko, S., Bityutskii, V. (2019). Nanoscale cerium dioxide as a mimetic of antioxidant protection enzymes. Multi disciplinary conference For young researchers. pp. 68–71. (in Ukrainian)
  42. Tsekhmistrenko, О., Bityutskii, V., Tsekhmistrenko, S., Kharchyshyn, V., Tymoshok, N., Spivak, M. (2020). Efficiency of application of inorganic and nanopreparations of selenium and probiotics for growing young quails. Theoretical and Applied Veterinary Medicine. 8(3), pp. 206–212. (in Ukrainian)
  43. Vanacker, S.A., Tromp, M.N., Haenen, G.R., Vandervijgh, W.J.F., Bast, A. (1995). Flavonoids as scavengers of nitric oxide radical. Biochemical and biophysical research communications. 214(3), pp. 755– 759. DOI:10.1006/bbrc.1995.2350
  44. Vicentini, F.T., He, T., Shao, Y., Fonseca, M.J., Verri Jr, W.A., Fisher, G.J., Xu, Y. (2011). Quercetin inhibits UV irradiation-induced inflammatory cytokine production in primary human keratinocytes by suppressing NF-κB pathway. Journal of dermatological science, 61(3), pp. 162–168. DOI:10.1016/j.jdermsci.2011.01.002
  45. Yeh, S.L., Wang, W.Y., Huang, C.H., Hu, M.L. (2005). Pro-oxidative effect of β-carotene and the interaction with flavonoids on UVA-induced DNA strand breaks in mouse fibroblast C3H10T1/2 cells. The Journal of nutritional biochemistry, 16(12), pp. 729–735. DOI:10. 1016/j.jnutbio.2005.03.012
  46. Yeo, J., Shahidi, F. (2019). Revisiting DPPH (2, 2-diphenyl-1-picrylhydrazyl) assay as a useful tool in antioxidant evaluation: A new IC100 concept to address its limitations. J Food Bioact, 7, pp. 36–42. DOI:10.31665/JFB.2019.7196
AttachmentSize
PDF icon bityutskyy_2_2022.pdf755.07 KB