You are here

The effect of the method of preservation of bee honey on the development of the pharyngeal gland in honey bees Apis mellifera L

Modern agricultural systems involve the use of large monocultures, which significantly limits the variety of flowers for bees. The article presents data on the biochemical composition of monofloral bee pollen and its influence on the development of pharyngeal glands in honey bees. The conducted studies give reason to believe that the protein content in bee pollen depends on the species origin and the preservation method. The studied samples for protein content show that its amount ranges from 11.9 to 24.9 %. The maximum amount of protein was found in fresh rapeseed and apple bee pollen. To study the influence of monofloral diets on the growth and development of the pharyngeal gland, 9 groups of analogous bee families were formed, 3 in each, which were fed three types of feed. The first type is fresh bee pollen from the following plants: apple tree, dandelion, winter rapeseed, buckwheat, clover, chestnut, raspberry. The second type is a similar bee pollen, only after a year of deep freezing storage. The ration of the third species consisted of the indicated bee pollen only in the process of harvesting it was dried. Along with this, the formed group of bee families was divided into two more subgroups. Some consumed mixed feed in equal proportions, others did not have any protein feed. The duration of the experiment was 15 days. On the 10th day, the development of acini of the pharyngeal gland was determined. The morphometry of the acini and the dynamics of vesicle filling indicate that the best indicators were found in the group of bees that consumed mixed bee pollen. A highly beneficial increase in the length and width of the acini of the pharyngeal gland was revealed by 36.4 and 34.7 % compared to bees that did not consume pollen at all. A group of bees that received fresh rapeseed and apple seed in their diet fully demonstrated their potential for royal jelly production. The worst development of the pharyngeal gland was found in the group of bees that consumed dried dandelion nectar. In this group of bees, the area of the acini ranged from 15.5 to 16.4 thousand μm2. The relationship between the protein content in the diet and the degree of development of the pharyngeal gland was revealed. Of the researched methods of its preservation, the conditions of deep freezing turned out to be the best. The use of experimental monofloral diets has a negative effect on the internal indicators of the body of honey bees.

Key words: Apis mellifera L., pharyngeal gland, nutrition, protein, bee pollen, pollen storage.

 

 

  1. Frias, B. E. D., Barbosa, C. D., Laurenco, A. P. (2016). Pollen nutrition in honey bees (Apis mellifera L.). Impact on adult health.Apidologie.47, pp. 15–25. DOI:10.1007/s13592-015-0373-y.
  2. Filipiak, M., Kuszewska, K., Asselman, M., Denisow, B., Stawiarz, E., Woyciechowski, M., Weiner, J. (2017). Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality. PLoS ONE. 12:e0183236. DOI:10.1371/journal. pone.0183236.
  3. Haase, A., Hoffmann, K. (2021). Pollen Diet– Properties and Impact on a Bee Colony. Insects. 12(9), 798 p. DOI:10.3390/insects12090798.
  4. Dolezal, A. G., Carrillo-Tripp, J., Judd, T. M., Allen Miller, W., Bonning, B. C., Toth, A. L. (2019). Interacting stressors matter: Diet quality and virus infection in honeybee health. R. Soc. Open Sci., 6:181803. DOI:10.1098/rsos.181803.
  5. Chang, H., Ding, G., Jia, G., Feng, M., Huang, J. (2022). Hemolymph Metabolism Analysis of Honey Bee (Apis mellifera L.) Response to Different Bee Pollens. Insects. 30, 14(1), 37 p. DOI:10.3390/insects14010037.
  6. Taha, E., Al-Kahtani, S., Taha, R. (2019). Protein content and amino acids composition of bee-pollens from major floral sources in Al-Ahsa, eastern Saudi Arabia. Saudi J Biol Sci., 26(2), pp. 232–237. DOI:10.1016/j.sjbs.2017.06.003.
  7. DeGrandi-Hoffman, G., Gage, S. L., Corby-Harris, V., Carroll, M., Chambers, M., Graham, H., Watkins deJong, E., Hidalgo, G., Calle, S., Azzouz-Olden, F., Meador, C., Snyder, L., Ziolkowski, N. (2018). Connecting the nutrient composition of seasonal pollens with changing nutritional needs of honey bee (Apis mellifera L.) colonies. J Insect Physiol.,109, pp. 114–124. DOI:10.1016/j.jinsphys.2018.07.002.
  8. Di Pasquale, G., Alaux, C., Le Conte, Y., Odoux, J. F., Pioz, M., Vaissière, B. E., Belzunces, L. P., Decourtye, A. (2016). Variations in the Availability of Pollen Resources Affect Honey Bee Health. PLoS One. 15, 11(9):e0162818. DOI:10.1371/journal. pone.0162818.
  9. Corby-Harris,V., Snyder, L.(2018). Measuring Hypopharyngeal Gland Acinus Size in Honey Bee (Apis mellifera L.) Workers. J Vis Exp., (139), 58261 p. DOI:10. 3791/58261.
  10. Corby-Harris, V., Snyder, L., Meador, C., Ayotte, T. (2018). Honey bee (Apis mellifera) nurses do not consume pollens based on their nutritional quality. PLoS One. 13(1):e0191050. DOI:10.1371/ journal.pone.0191050.
  11. Wright, G. A., Nicolson, S. W., Shafir, S. (2018). Nutritional Physiology and Ecology of Honey Bees. Annu Rev Entomol. 7, 63, pp. 327–344. DOI:10.1146/annurev-ento-020117-043423.
  12. Liolios, V., Tananaki, C., Kanelis, D. (2022). The microbiological quality of fresh bee pollen during the harvesting process. Journal of Apicultural Research, Published online: 03 Nov 2022. DOI:10.1051/ apido:2000130.
  13. Zheng, B., Wu, Z., Xu, B. (2014). The Effects of Dietary Protein Levels on the Population Growth, Performance, and Physiology of Honey Bee Workers During Early Spring. J Insect Sci., 14, 191 p. DOI:10.1093/jisesa/ieu053.
  14. Attia, Y., Al-Khalaifah, H., Ibrahim, M., Al-Hamid, A., Al-Harthi, M., El-Naggar, A. (2017). Blood Hematological and Biochemical Constituents, Antioxidant Enzymes, Immunity and Lymphoid Organs of Broiler Chicks Supplemented with Propolis, Bee Pollen and Mannan Oligosaccharides Continuously or Intermittently. 96 (12), pp. 4182–4192. DOI:10.3382/ps/pex173.
  15. Sirotkin, A., Tarko, A., Alexa, R., Fakova, A., Alwasel, S., Harrath, A. (2020). Bee pollens originating from different species have unique effects on ovarian cell functions. Pharm Biol., 58 (1), pp. 1101–1106. DOI:10.1080/13880209.2020.183 9514.
  16. Kolesarova, A., Bakova, Z., Capcarova, M., Galik, B., Juracek, M., Simko, M., Toman, R., Sirotkin, A.V. (2013). Consumption of bee pollen affects rat ovarian functions. J Anim Physiol Anim Nutr (Berl), 97 (6), pp. 1059–1065. DOI:10.1111/ jpn.12013.
  17. Kolesarova, A., Capcarova, M., Bakova, Z., Galik, B., Juracek, M., Simko, M., Sirotkin, A. (2011). The effect of bee pollen on secretion activity, markers of proliferation and apoptosis of porcine ovarian granulosa cells in vitro. J Environ Sci Health B, 46(3), pp. 207–212. DOI:10.1080/ 03601234.2011.540202.
  18. Höcherl, N., Siede, R., Illies, I., Gätschenberger, H., Tautz, J. (2012). Evaluation of the nutritive value of maize for honey bees. J Insect Physiol., 58(2), pp. 278–85. DOI:10.1016/ j.jinsphys.2011.12.001.
  19. Branchiccela, B., Castelli, L., Corona, M. (2019). Impact of nutritional stress on the honeybee colony health. Sci Rep., 9, 10156 p. DOI:10.1038/ s41598-019-464 53-9.
  20. Béjar, V., Garduño, J., Calvillo, K., García, E. (2022). Survival, Body Condition, and Immune System of Apis mellifera liguistica Fed Avocado, Maize, and Polyfloral Pollen Diet. Neotrop Entomol. 51(4), pp. 583–592. DOI:10.1007/s13744-022-00974-7.
  21. Pasquale, G., Salignon, M., Conte, Y., Belzunces, L., Decourtye, A., Kretzschmar, A, Suchail, S., Brunet, J., Alaux, C. (2013). Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PLoS One. 5, 8(8):e72016. DOI:10.1371/ journal.pone.0072016.
  22. Azzouz-Olden, F., Hunt, A., DeGrandi-Hoffman, G. (2018). Transcriptional response of honey bee (Apis mellifera L.) to differential nutritional status and Nosema infection. BMC Genomics. 19(1), 628 p. DOI:10.1186/s12864-018-5007-0.
  23. Kjeldahl, J. (1883). Neue Methode sur Bestimmung der Stickstoffs in organischen Korpern. S. Anal. Shem., no. 22, 366 p.
  24. Stabler, D., Power, E., Borland, A. (2018). A method for analysing small samples of floral pollen for free and protein‐bound amino acids. Methods Ecol Evol. 9(2), pp. 430–438. DOI:10.1111/ 2041- 210X.12867.
  25. Kovalskyi, Yu.V., Kyryliv, Ya.I. (2014). The influence of the vital range of temperature on the physiological, biochemical and morphological parameters of honey bees (Apis mellifera L.) in the post-embryonic period: methodological recommendations. Lviv: Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv, 105 p.
  26. Kovalskyi, Yu., Kyryliv, Ya. (2014). The effect of reduced incubation temperature of honey bee brood on the morphological features of the structure of the pharyngeal gland. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, Vol. 16, no. 3 (60), Part 2, pp. 141-147.
  27. Shcherbatyy, Z. Ye., Kos, V. F., Kropyvka, Yu. H. (2014). Henetyka z biometriyeyu [Genetics with biometrics]. (Laboratorno-praktychnyy kurs) [(Laboratory and practical course)]. Lviv, 288 p.
  28. Al-Sherif, A., Mazeed, A., Ewis, M., Emad, A., Hagag, E., Kamel, A. (2017). Activity of salivary glands in secreting honey-elaborating enzymes in two subspecies of honeybee (Apis mellifera L). Physiologicak Entomology. First published: 29 August 2017. DOI:10.1111/phen. 12213.
  29. Smodiš Škerl, M., Gregorc, A. (2015). Characteristics of hypopharyngeal glands in honeybees (Apis mellifera carnica) from a nurse colony. Slov Vet Res, 52 (2), pp. 67–74. UDC 638.121.2:638.144:612 .4.09:612.33.
  30. Seydur, R., Ibamelaker, T., Sudhanya, R. (2014). Hypopharyngeal Gland Activity in Task-Specific Workers Under Brood and Broodless Conditions in Apis Cerana Indica (Fab.). Journal of Apicultural Science, 58(2), pp. 59–70. DOI:10.2478/jas-2014- 0022.
  31. Keskin, M., Özkök, A. (2020). Effects of drying techniques on chemical composition and volatile constituents of bee pollen. Czech J. Food Sci., 38, pp. 203–208. DOI:10.17221/79/2020-CJFS.
AttachmentSize
PDF icon kovalskyi_1_2023.pdf775.1 KB