You are here

Optimization of the technological process of the farm biogas plant

Biomass is considered to be one of the most promising alternative sources of energy today. One of the most effective methods of purification and processing any livestock is methane fermentation with the production of biogas. At the same time, the issue of environmental protection is being resolved. Biogas technology makes it possible to obtain natural biofertilizer with the help of anaerobic fermentation, which contains biologically active substances with trace elements, using accelerated methods. The issue of using methane fermentation is relevant. Therefore, the purpose of the research is to determine the optimal duration of manure fermentation in the bioreactor of the farm installation. For the study, a farm-type biogas plant with a total reactor volume of 51,3 m3 was used, where the volume of liquid manure in the reactor was 40,8 m3 . The study of the bioreactor operation process was carried out in 4 operating modes: I - operating mode: - loading dose – 2,5 m3 /day, - duration of fermentation - 16 days; II - mode of operation: - loading dose - 4 m3 / day, - duration of fermentation - 10 days; III - mode of operation: - loading dose – 5,5 m3 /day, - duration of fermentation - 7 days; VI - mode of operation: - loading dose - 7 m3 /day, - duration of fermentation - 6 days. For all operating modes: - fermentation temperature - 32 o C; -- excess pressure of biogas in the reactor – 0,005 MPa; - loading frequency – 1 time/day. According to the results of the research, the following indicators of the quality of the technological process for 4 operating modes were obtained: I - mode of operation: biogas output – 16 m3 /day, maximum possible biogas output (theoretical) – 20,4 m3 /day, specific biogas output per unit volume of the loaded mass – 6,4 m3 /m3 ; II - operating mode: biogas output – 28,5 m3 /day, maximum possible biogas output (theoretical) – 36,7 m3 /day, specific biogas output per unit volume of loaded mass – 7,1 m3 /m3 ; III - operating mode: biogas output – 34,5 m3 /day, maximum possible biogas output (theoretical) – 42,3 m3 /day, specific biogas output per unit volume of loaded mass – 6,3 m3 /m3 ; VI - operating mode: biogas output – 35,5 m3 /day, maximum possible biogas output (theoretical) – 44,5 m3 /day, specific biogas output per unit volume of loaded mass – 5,1 m3 /m3 . The dependence of biogas output on the dose of dry organic substance (DOS) loading of the bioreactor was determined: I mode of operation: daily loading dose – 1,75 kg of DOS /m3 reactor, - actual biogas output – 0,22 m3/kg SOF, - maximum possible biogas output (theoretical) – 0,28 m3 /kg DOS; II - mode of operation: daily loading dose – 3.19 kg of DOS /m3 reactor, - actual biogas output – 0.21 m3/kg DOS, - maximum possible biogas output (theoretical) – 0,27 m3 /kg DOS; ІІІ - operating mode: daily loading dose – 4,18 kg DOS /m3 reactor, - actual biogas output – 0.19 m3 /kg DOS, - maximum possible biogas output (theoretical) – 0.23 m3 /kg DOS; ; VI - mode of operation: daily loading dose – 5.95 kg DOS /m3 reactor, - actual biogas output – 0.15 m3 /kg DOS, - maximum possible biogas output (theoretical) – 0.19 m3 /kg DOS. The obtained data on the daily output of biogas at the four studied loading modes indicate that with the given characteristics of the manure loaded into the reactor, more efficient operation of the installation is ensured at daily loading doses of 10-13% of the volume of raw materials in the bioreactor, that is, at the daily loading of the reactor 4.0-5.5 m3 of manure with a fermentation duration of 10-7 days. In practice, the duration of fermentation is chosen depending on the temperature: at 25-40 o C (32 o C) in the following intervals from 10 to 20 days. The results of the study make it possible to recommend that at a temperature of 32 °C, the duration of fermentation should be reduced from 10 to 20 days to 7-10 days, which increases the productivity of the biogas plant by the mass of fermented manure.

Key words: biogas plant, bioreactor, biogas, biofertilisers, farm waste, biomass, methane fermentation.

 

  1. Heletukha, H.H., Kucheruk, P.P., Matveieiev, Yu.B. (2013). Perspektyvy vyrobnytstva ta vykorystannia biohazu v Ukraini [Prospects for the production and use of biogas in Ukraine]. Analytical note of BAU, no. 4. Available at: http//:www.uabio.orgimgfilesdocsposition-paper-uabio-4-ua.pdf (In Ukrainian).
  2. Goncharuk, I.V. (2020). Biogas production in the agricultural sector – a way to increase energy independence and soil fertility. Agrosvit, 15, pp. 18–29. (In English).
  3. Kaletnik, H.M., Zdyrko, N.H., Fabiianska, V.Yu. (2018). Biohaz v domohospodarstvakh – zaporuka ener-honezalezhnosti silskykh terytorii Ukrainy [Biogas in households is a guarantee of energy independence of rural areas of Ukraine]. Ekonomika [Economy]. Finansy [Finances]. Menedzhment: aktualni pytan-nia nauky i praktyky [Management: topical issues of science and practice]. 8, pp. 7–22. (In Ukrainian).
  4. Kaletnik, G., Lutkovska, S. (2020). Innovative Envi-ronmental Strategy Sustainable Development. European Journal of Sustainable Development, 9 (2), pp. 89–98. (In English).
  5. Kaletnik, G. (2018). Production and use of biofuels: Second edition, supplemented: textbook. Vinnytsia: LLC “Nilan- Ltd”, 336 p. (In English).
  6. Tokarchuk, D.M. (2018). Ekonomiko-ekolohichni vyhody zastosuvannia biohazovykh ustano[1]vok u domohospodarstvakh [Economic and environmental benefits of using biogas plants in households]. Ekonomika [Economy]. Finansy [Finances]. Menedzhment: aktualni pytan-nia nauky i praktyky [Management: topical issues of science and practice]. 6, pp. 39–49. (In Ukrainian).
  7. Khodakivska, O.V., Shpikuliak, O.H. (2017). Instytuty «zelenoi» ekonomiky u zabezpechenni staloho rozvytku ahrosektoru: teoretychnyi vymir [Institutions of “green” economy in ensuring sustainable development of the agricultural sector: a theoretical dimension]. Business Inform, 9, pp. 13–18. (In Ukrainian).
  8. Shpykuliak, O.H., Ivanchenko, V.O. (2018). Dosvid Nimechchyny u rozvytku enerhetychnykh kooperatyviv: perspek-tyvy dlia Ukrainy [Germany's experience in the development of energy cooperatives: prospects for Ukraine]. Economics of agro-industrial complexю 8, pp. 92–101. (In Ukrainian).
  9. Pierro, N., Giuliano, A., Giocoli, A., Barletta, D., De Bari, I. (2023) Process Design of the Biogas Upgrading to Biomethane Using Green Hydrogen. Chemical Engineering Transactions, Vol. 100, pp. 7–12.
  10. Honcharuk, I.V., Vovk, V.Iu. (2022) Vyrobnytstvo biometanu z ahrobiomasy v Ukraini: problemy ta perspektyvy [Production of biomethane from agrobiomass in Ukraine: problems and prospects]. Podilskyi visnyk: silske hospodarstvo, tekhnika, ekonomika [Podilsky Visnyk: agriculture, technology, economy]. Ekonomichni nauky [Economic sciences], Vol. 2 (37), pp. 65–72. (In Ukrainian).
  11. Kaletnik, H.M., Tokarchuk, D.M. (2021) Efektyvnist vyroshchuvannia enerhetychnykh kultur ta yikh pererobky na biopalyvo v konteksti zabezpechennia enerhetychnoi avtonomii ahrarnykh pidpryiemstv [Effectiveness of growing energy crops and their processing into biofuel in the context of ensuring energy autonomy of agricultural enterprises]. Ekonomika, finansy, menedzhment: aktualni pytannia nauky i praktyky [Economy, finances, management: topical issues of science and practice]. Vol. 2, pp. 7–25. (In Ukrainian).
  12. Kupchuk, I.M., Hontaruk, Ya.V., Prysiazhniuk, Yu.S. (2022) Perspektyvy pidvyshchennia rivnia enerhetychnoi avtonomii pererobnykh pidpryiemstv APK Ukrainy za rakhunok vyrobnytstva biohazu [Prospects for increasing the level of energy autonomy of processing enterprises of the AIC of Ukraine due to biogas production]. Tekhnika, enerhetyka, transport APK [Engineering, energy, transport AIC]. Vol. 3 (118), pp. 59–73. (In Ukrainian).
  13. Trypolska, H. (2021) Perspektyvy derzhavnoi pidtrymky rozvytku haluzi biometanu v Ukraini do 2040 roku [Prospects of state support for the development of the biomethane industry in Ukraine until 2040]. Ekonomika i prohnozuvannia [Economics and forecasting], Vol. 2, pp. 128–142. (In Ukrainian).
  14. Heletukha H. H., Zheliezna T. A., Drahniev S. V., Haidai O. I. (2022) Desiat krokiv Ukrainy dlia vidmovy vid rosiiskoho pryrodnoho hazu: analitychna zapyska UABIO № 28 [Ten steps of Ukraine to abandon Russian natural gas: analytical note of UABIO № 28]. Kyiv, 47 p. Available at:https://uabio.org/wp-content/uploads/2022/04/10-krokiv-Ukrayinydlya-vidm... (accessed November 12, 2023) (in Ukrainian)
  15. Pryshliak, N.V. (2011). Dosvid u budivnytstvi indyvidualnykh biohazovykh ustanovok [Experience in the construction of individual biogas plants.]. Economics of the Agricultural Industry, no. 1, pp. 165–169. (In Ukrainian).
  16. Pryshliak, N.V. (2018). Vidnovliuvalna enerhetyka v Indii: suchasnyi stan ta perspektyvy rozvytku [Renewable ener-gy in India: current status and prospects]. Investments: practice and experience, no. 21, pp. 15–20. (In Ukrainian).
  17. Ekonomichna polityka Ukrayiny / Ministerstvo ekonomichnoho rozvytku i torhivli Ukrayiny [Economic policy of Ukraine / Ministry of Economic Development and Trade of Ukraine]. Available at:http://www.me.gov.ua/control/uk/publish/category/main?cat_id=133291. (In Ukrainian).
  18. Hutsyulyak, V.D. (1992). Biokonversiya orhanichnykh vidkhodiv dlya otrymannya biohumusu, biohazu, biolohichnykh rechovyn i okhorona navkolyshnʹoho seredovyshcha [Bioconversion of organic waste to obtain biohumus, biogas, biological substances and environmental protection]. Zakhyst roslyn [Plant protection]. no. 1, 61 p. (In Ukrainian).
  19. Biopalyvo – alʹternatyva hazu [Biofuel - an alternative to gas]. Available at: www.ecoclub.kiev.ua. (In Ukrainian).
  20. Baader, V., Done, E., Brennderfer, M. (1982). Biohaz: teoriya i praktyka [Biogas: theory and practice]. K.: Kolos, 148 p. (In Ukrainian).
AttachmentSize
PDF icon senchuk_2_2024.pdf687.92 KB