You are here

Analysis of dairy productivity of cows of ukrainian brown dairy breed of different genotypes by kappa-casein

In the herd of cattle of the Ukrainian Brown Dairy breed studies were conducted, the purpose of which was to study the influence of the genotype of cows by kappa-casein on the indicators of their milk productivity. Genotyping of 29 heads of cattle. Determination of the polymorphism of the kappa-casein gene was performed in the genetic laboratory of the Institute of Physiology n.a. Bogomolets of NAS using molecular biological analysis of allele recognition by polymerase chain reaction (PCR) in real time. Allele A had a slightly higher frequency - 0.517 compared to allele B - 0.483 at the locus of the kappa-casein gene, although it was not significant. As a result, the proportions of AA and BB genotypes were high (38 and 34%, respectively). The performed genetic-statistical analysis revealed an excess in the kappa-casein locus of homozygous variants AA and BB and a lack of heterozygous AB. The degree of homozygosity, which is 50.1%, indicates a sufficient level of consolidation in the studied population of cattle. The number of effective active alleles in the kappa-casein locus of cows of the Ukrainian Brown Dairy breed is 1.99, with the maximum value of the level of polymorphism possible at a two-allele locus of 2. A negative heterozygosity test (HT) indicates a lower proportion of actual heterozygotes relative to the proportion of theoretical heterozygotes. The reason for the existing genetic structure of the herd of Ukrainian Brown Dairy breeds by the kappa-casein locus was the use of Swiss cattle breeders, most of which were not evaluated by the genotype of the kappa-casein gene. Studies of the level of milk productivity of cows of different genotypes by kappa-casein in the first lactation did not reveal a significant difference. At the same time, heterozygous (AB) animals were inferior to homozygous (AA and BB) in terms of milk yield, and animals with AA and AB genotypes were preferred in terms of quality. For the best lactation, a significant difference was found in the amount of milk yield and the amount of milk fat. Homozygous animals (AA and BB) significantly (p <0.05) outperformed heterozygous (AB) in milk yield, by 1091 and 922 kg, respectively. Animals with heterozygous AB genotype in terms of the average amount of milk fat were significantly inferior to homozygous AA and BB animals (p <0.05). The small number of experimental animals was one of the reasons for the discrepancy between the results of research and the data of other scientists.

Key words: breed, milk yield, fat content, protein content, kappa casein, genotype, allele.

  1. Gaal, E., Medeshi, G., Veretskey, L. (1982). Elektroforez v razdelenii biologicheskih makromolekul [Electrophoresis in the separation of biological macromolecules]. Moscow: Mir, 446 p.
  2. Shkurko, T.P., Ivanov, O.I., Ivanovб I.A. (2017). Otsinka molochnoi produktyvnosti pervistok holshtynskoi porody za henom kapa-kazeinu [Estimation of milk productivity of Holstein breed firstborns by kappa-casein gene]. Visnyk Dnipropetrovskoho derzhavnoho ahrarnoekonomichnoho universytetu [Bulletin of Dnipropetrovsk State Agrarian and Economic University]. no. 3, pp. 56–59.
  3. Selionova, M. I., CHizhova, L. N., Surzhikova, E. S., SHarko G.N., Mihajlenko, T. N., Chudnovec, A. I. (2019). Porodnye osobennosti allel'nogo profilya genov, kontroliruyushchih molochnuyu produktivnost' krupnogo rogatogo skota [Breed features of the allelic profile of genes that control milk production in cattle]. Agrozootekhnika [Agrosotechnics]. no. 2 (1), pp. 1–12. Available at:https://doi. org/10.15838/alt.2019.2.1.3
  4. Amalfitano, N., Cipolat-Gotet, C., Cecchinato, A., Malacarne, M., Summer, A., Bittante, G. (2018). Milk protein fractions strongly affect the patterns of coagulation, curd firming, and syneresis. J. Dairy Sci. Vol. 102, pp. 2903–2917. Available at:https://doi.org/10.3168/jds.2018-15524
  5. Anggraenia, A., Sumantrib, C., Farajallahc, A., Andreasd, E. (2010). Kappa-Casein Genotypic Frequencies in Holstein-Friesian Dairy Ca le in West Java Province. Media Peternakan, Vol. 33 (2), pp. 61–67.
  6. Azevedo, A., Nascimento, C., Steinberg, R., Carvalho, M., Peixoto, M., Teodoro, R., Verneque, R., Guimarães, S. Machado, M. (2008). Genetic polymorphism of the kappacasein gene in Brazilian cattle. Genetics and Molecular Research. Vol. 7 (3), pp. 623–630.
  7. Bezdíček, J. (2007). Allele and genotype frequencies of milkprotein kappa-casein (CSN3) in artifical insemination bulls of czech fleckvieh and holstein breed. Sborník mendelovy zemědělské a lesnické univerzity v brně. Vol. 5, рp. 17–22.
  8. Bonfatti, V., Chiarot, G., Carnier, P. (2014). Glycosylation of k-casein: Genetic and nongenetic variation and effects on rennet coagulation properties of milk. J. Dairy Sci. Vol. 97, pp. 1961–1969. Available at:https://doi. org/10.3168/jds.2013-7418
  9. Botaro, B., Vinícius, Y., Simões, C. (2009) Effect of the kappa-casein gene polymorphism, breed and seasonality on physicochemical characteristics, composition and stability of bovine milk. Revista Brasileira de Zootecnia. Vol. 38 (12), pp. 2447–2454. Available at:https://doi.org/10.1590/S1516- 35982009001200022
  10. Deb, R., Singh, U., Kumar, S., Singh, R., Sengar, G., Sharma, A., (2014). Genetic polymorphism and association of kappa-casein gene with milk production traits among Frieswal (HF × Sahiwal) cross breed of Indian origin. Journal of Veterinary Research, Shiraz University IJVR. Vol. 15 (4), pp. 406–408.
  11. Gallinat, J., Qanbari, S., Drögemüller, C., Pimentel, E., Thaller, G., Tetens, J. (2013). DNA-based identification of novel bovine casein gene variants. J. Dairy Sci. January. 2013. Vol. 96 (1), pp. 699–709. Available at:https://doi. org/10.3168/jds.2012-5908
  12. Gustavsson, F., Buitenhuis, A., Johansson, M., Bertelsen, H., Glantz, M., Poulsen, N. (2013). Effects of breed and casein genetic variants on protein profile in milk from Swedish Red, Danish Holstein, and Danish Jersey cows. J. Dairy Sci. Vol. 97, pp. 3866–3877. Available at:http://doi. org/10.3168/jds.2013-7312
  13. Gustavsson, F., Glantz, M., Buitenhuis, A., Lindmark, M., Stalhammar, H., Andren, A., Paulsson, M. (2014). Factors influencing chymosin-induced gelation of milk from individual dairy cows: Major effects of casein micelle size and calcium. International Dairy Journal,. Vol. 39(1), pp. 201–208.
  14. Heck, J.M.L., Schennink A., van Valenberg H.J.F., Bovenhuis H., Visker, M. H. P. W., van Arendonk, J. A. M., van Hooijdonk, A. C. M. (2019). Effects of milk protein variants on the protein composition of bovine milk, Journal of Dairy Science. Vol. 92(3), pp. 1192–1202. Available at:https:// doi.org/10.3168/jds.2008-1208
  15. Kaminski, S., Figiel, L. (1993). Kappa-casein genotyping of Polish Black-and-White Holstein-Friesian bulls by polymeraze chain reaction. Genetica Polonica. Vol 34, pp. 65–72.
  16. Klauzinska, M., Siadkowska, E., Grochowska, R. (2001). Polymorphism of molecular-genetic systems in the Polish red cattle. Tsitol Genet. Vol. 35 (1), pp. 58–60.
  17. Lateef, Y. M., Hamad, R. (2019). Effect of mutation site of k-casein gene on protein quantity, composition, and other milk constituents in Holstein cows. J. Pharm. Sci. Vol. 11(2), pp. 398–401.
  18. Leveziel, H., Metenier, L., Mahe, M. (1988). Identification of the two common alleles of the bovine k-casein locus by the RFLP technicue, using the enzyme Hind III. Genet. Sel. Evol. Vol. 20. 247 p.
  19. Matějíček, J., Matějíčková, M., Štípková, O., Hanuš, V., Genčurová, J., Kyseľová, E., Němcová, T., Kott, J. Šefrová, M. Krejčová, S. Melčová, I. Hölzelová, J. Bouška, J. (2008) Frelich Joint effects of CSN3 and LGB genes on milk qulity and coagulation properties in Czech Fleckvieh. Czech J. Anim. Sci. Vol. 53(6), pp. 246–252.
  20. Miluchová, M., Gábor, M., Candrák, J., Trakovická, A., Candráková, K. (2018). Association of HindIIIpolymorphism in kappa-casein gene with milk, fat and protein yield in holstein cattle. Acta Biochimica Polonica. Vol. 65, no. 3, pp. 403–407. Available at:https://doi.org/10.18388/ abp.2017_2313.
  21. Molee, A., Poompramun, C., Mernkrathoke, Р. (2015). Effect of casein genes - beta- LGB, DGAT1, GH, and LHR - on milk production and milk composition traits in crossbred Holsteins. Genetics and Molecular Research. Vol. 14 (1), pp. 2561–2571.
  22. Pinder, S. J., Perry, B. N., Skidmore, C. J. (1991). Analysis of polymorphism in the bovine casein genes by use of polymerase chain reaction. Anim. Genet. Vol. 22, pp. 11–20.
  23. Poulsen, N., Glantz, M., Rosengaard, N., Paulsson, M., Larsen, L. (2017) Comparison of milk protein composition and rennet coagulation properties in native Swedish dairy cow breeds and high-yielding Swedish Red cows. J. Dairy Sci. Vol. 100, pp. 8722–8734. Available at:https://doi. org/10.3168/jds.2017-12920
  24. Sitkowska, B., Neja, W. Wiśniewska, E. (2008). Relations between kappa-casein polymorphism (CSN3) and milk performance traits in heifer cows. Journal of Central European Agriculture. Vol. 4, pp. 641–644.
  25. Zambrano, B., Cabrera, E., Portilla, S. Galindo, R. (2010). Kappa casein genotypes and curd yield in Holstein cows. Rev Colomb Cienc Pecu. Vol. 23, pp. 422–428.
  26. Zepeda-Batista, J., Saavedra-Jiménez, A., Ruíz Flores, А., Núñez-Domínguez, R., Ramírez-Valverde, L. (2017). Potential influence of κ-casein and β-lactoglobulin genes in genetic association studies of milk quality traits. Asian-Australasian Journal of Animal Sciences. Vol. 30 (12), pp. 1684–1688. Available at:https://doi.оrg/10.5713/ ajas.16.0481
AttachmentSize
PDF icon ladyka_1_2021.pdf561.02 KB