You are here

Anti-nutritional effect of phytates – extraphosphoric effect of phytase

The increase of animal and poultry production can be achieved by the effective use of fodder, including vegetable feed. However, it is known that the vegetable feed can contain anti-nutrients (phytic acid or its salts). They reduce the nutrient availability in the diet. That is why, the research aim is the description of the phytate influence on the body and the definition of the right feed phytases for fodder production.

Phosphorus is responsible for the energy supply to the body for metabolic processes. It plays a significant role in the metabolism of proteins, fats and carbohydrates. It takes part in the synthesis of enzymes, hormones, vitamins. Phosphorus ensures the stability of the skeleton of animals along with calcium. However, the predominant part of phosphorus is not available for animals in the vegetable feed as it is presented by phytates, which do not split in the gastrointestinal tract (GIT) of animals. When phytates get into the acidic environment of the stomach they ionize and react with positively charged minerals, proteins, amino acids creating compounds that are inaccessible for further digestion. The availability of phosphorus from phytates is provided by the phytase adding to the fodder, which not only splits phytates, but also reduces their anti-nutritional effect by concentration decreasing.

From the present-day data it is known that phytates contain difficult soluble phosphorus. They also make it difficult to absorb another biologically active nutrients from fodder. The enrichment of the animal diet with microbial phytase makes calcium, zinc and copper be more accessible. It improves digestibility of food and stimulates weight gain. Phytase activity determined by the laboratory method does not allow to make up a conclusion about its expected effectiveness for animals. At present it is almost impossible to conduct such complex research and to use the dynamic modeling of digestion processes in the laboratory. The decision about the appropriate use of proposed preparations with phytase in the fodder is made on the basis of the production test.

Keywords: animal feed, enzymes, phytase, anti-nutritional effect of phytates, extra phosphoric effect of phytase, activity of the feed preparations of phytase.

1. Krjukov, V.S., Glebova, I.V., Antipov, A.A. (2019). Ocenka dejstvija fitaz v pishhevaritel'nom trakte i ispol'zovanie preparatov fitazy v pitanii zhivotnyh [Evaluation of phytase activity in the digestive tract and the use of phytase preparations in animal nutrition]. Problemy biologii produktivnyh zhivotnyh [Problems of the biology of productive animals]. no. 2, pp. 5–25.

2. Dzhouns, G. (2014). Kak vybrat' nailuchshuju fitazu pri sostavlenii raciona [How to choose the best phytase in the preparation of the diet]. Cenovik [Of Cost]. no.10, pp. 102–103.

3. Morales, G.A., Marquez, L., Hernández, A.J., Moyano, F.J. (2016). Chapter 9 Phytase effects on protein and phosphorus bioavailability in fish diets. Phytate destruction – consequences for precision animal nutrition, pp.129–166. Available at: http://doi.org/10.3920/978-90-8686-836-0_9

4. Abelson, P.H. (1999). A Potential Phosphate Crisis. Science. no. 283, pp. 2015–2015. Available at: http://doi.org/10.1126/science.283.5410.2015.

5. Cordell, D., Drangert, J.O., White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change. no. 19, pp. 292–305. Available at: http://doi.org/10.1016/j.gloenvcha.2008.10.009.

6. Daneshgar, S., Callegari, A., Capodaglio, A., Vaccari, D. (2018). The Potential Phosphorus Crisis: Resource Conservation and Possible Escape Technologies: A Review. Resources. no. 7, 37 p. Available at: http://doi.org/10.3390/resources7020037.

7. Nayini, N.R., Markakis, P. (1986). Phytases. In: Graf, E. (ed.). Phytic Acid: Chemistry and Applications. Pilatus Press, Minneapolis, Minnesota, pp. 101–118.

8. Nys, Y., Frapin, D., Pointillart, P. (1996). Occurrence of phytase in plants, animals and microorganisms. In: Coelho, M.B. and Kornegay, E.T. Еds Phytase in Animal Nutrition and Waste Management. BASF Corporation, Mount Olive, New Jersey. pp. 213–240.

9. Reddy, N.R., Sathe, S.K. Salunkhe, D.K. Phytates in legumes and cereals. Advances in Food Research. 1982, Vol. 28, pp. 1–92. Available at: http://doi.org/10.1016/s0065-2628(08)60110-x.

10. Lott, J.N.A., Ockenden, I., Raboy, V., Batten, G. (2000). Phytic acid and phosphorus in crop seed and fruits: a global estimate. Seed Science Research. Vol. 10, pp. 11–33. Available at: http://doi.org/10.1017/s0960258500000039.

11. Raboy, V., Young, K., Larson, S., Cook, A. (2001). Genetics of Phytic Acid Synthesis and Accumulation. Food Phytates. 62 p. Available at: http://doi.org/10.1201/9781420014419.ch5.

12. Costello, A.J.R., Glonek, T., Myers, T.C. (1976). 31P-nuclear magnetic resonance-pH titrations of myo-inositol hexaphosphate. Carbohydrate Resource. Vol. 46, pp. 159–171.

13. Dzhouns, G. (2014). Kak vybrat' nailuchshuju fitazu pri sostavlenii raciona [How to choose the best phytase in the preparation of the diet]. Cenovik [Of Cost]. no.10, pp. 102–103.

14. Anderson, P.A. (1985). Interactions between proteins and constituents that affect protein quality. In: Digestibility and Amino Acid Availability in Cereals and Oilseeds, (JW Finley and DT Hopkins, editors). St Paul, MN: American Association of Cereal Chemists, Inc. P. pp. 31–45.

15. Champagne, E.T., Fisher, M.S., Hinojosa, O. (1990). NMR and ESR studies of interactions among divalent cations, phytic acid, and N-acetyl-amino acids. Journal of Inorganic Biochemistry. no. 38, pp. 199–215. Available at: http://doi.org/10.1016/0162-0134(90)84013-f.

16. Selle, P.H., Cowieson, A.J., Ravindran, V. (2009). Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livestock Science. no. 124, pp. 126–141. Available at: http://doi.org/10.1016/j.livsci.2009.01.006.

17. Trufanov, O. V. (2011). Fitaza v kormlenii sel'skohozjajstvennyh zhivotnyh i pticy [Phytase in feeding farm animals and poultry]. Kiev: PolygraphInco, 112 p.

18. Krjukov, V., Zinov'ev, S. (2015). Davajte primenjat' pravil'no biologicheskie ponjatija! [Let's apply biological concepts correctly!]. Kombikorma [Fodder]. no. 12, pp. 89–90.

19. Taylor, T.C. (1965). The availability of the calcium and phosphorus of plant materials for animals. Proceedings of the Nutrition Society. no. 24, pp. 105–112. Available at: http://doi.org/10.1079/pns19650017.

20. Nelson, T.S. (1967). The Utilization of Phytate Phosphorus by Poultry-A Review. Poultry Science. no. 46, pp. 862–871. Available at: http://doi.org/10.3382/ps.0460862.

21. Ravindran, V. (1995). Phytases in poultry nutrition. An overview. Proceedings, Australian Poultry Science Symposium. pp. 135–139.

22. Cowieson, A.J., Acamovic, T., Bedford, M.R. (2006). Phytic Acid and Phytase: Implications for Protein Utilization by Poultry. Poultry Science. no. 85, pp. 878–885. Available at: http://doi.org/10.1093/ps/85.5.878.

23. Selle, P.H., Cowieson, A.J., Cowieson, N.P., Ravindran, V. (2012). Protein–phytate interactions in pig and poultry nutrition: a reappraisal. Nutrition Research Reviews. Vol. 25, pp. 1–17. Available at: https://doi.org/10.1017/s0954422411000151.

24. Cowieson, A.J., Ruckebusch, J.P., Sorbara, J.O.B., Wilson, J.W., Guggenbuhl, P., Roos, F.F. (2017). A systematic view on the effect of microbial phytase on ileal amino acid digestibility in broiler. Animal Feed Science and Technology. Vol. 225, pp. 182–194. Available at: https://doi.org/10.1016/j.anifeedsci.2017.01.008.

25. Menezes-Blackburn, D., Gabler, S., Greiner, R. (2015). Performance of seven commercial phytases in an in vitro simulation of poultry digestive tract. Journal of Agricultural and Food Chemistry. Vol. 63, pp. 6142–6149. Available at: https://doi.org/10.1021/acs.jafc.5b01996.

26. Yu, S., Cowieson, A., Gilbert, C., Plumstead, P., Dalsgaard, S. (2012). Interactions of phytate and myo-inositol phosphate esters (IP1-5) including IP5 isomers with dietary protein and iron and inhibition of pepsin. Journal of Animal Science. Vol. 90, pp. 1824–1832. Available at: https://doi.org/10.2527/jas.2011-3866.

27. Cowieson, A. J., Ravindran, V. (2007). Effect of phytic acid and microbial phytase on the flow and amino acid composition of endogenous protein at the terminal ileum of growing broiler chickens. British Journal of Nutrition. Vol. 98, pp. 745–752. Available at: https://doi.org/10.1017/s0007114507750894.

28. Jorquera, M., Martinez, O., Varuyama, F., Marschner, P., Mora, M. (2008). Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes and Environments. Vol. 23, pp. 182– 191. Available at: https://doi.org/10.1264/jsme2.23.182.

29. Singh, B., Satyanarayana, T. (2015). Fungal phytases: characteristics and amelioration of nutritional quality and growth of non-ruminants. Journal of Animal Physiology and Animal Nutrition. Vol. 99, pp. 646–660. Available at: https://doi.org/10.1111/jpn.12236.

30. Sommerfeld, V., Künzel, S., Schollenberger, M., Kühn, I., Rodehutscord, M. (2017). Influence of phytase or myo-inositol supplements on performance and phytate degradation products in the crop, ileum, and blood of broiler chickens. Poultry Science. Vol. 97, pp. 920–929. Available at: https://doi.org/10.3382/ps/pex390.

31. Qvirist, L., Carlsson, N.G., Andlid, T. (2015). Assessing phytase activity–methods, definitions and pitfalls. Journal of Biological Methods. Vol. 2, 16 p. Available at: https://doi.org/10.14440/jbm.2015.58.

32. Beeson, L. A, Walk, C. L., Bedford, M. R., Olukosi, O. A. (2017). Hydrolysis of phytate to its lower esters can influence the growth performance and nutrient utilization of broilers with regular or super doses of phytase. Poultry Science. Vol. 96, pp. 2243–2253.Availableat: https://doi.org/10.3382/ps/pex012.

33. Onyango, E.M., Bedford, M.R.,Adeola, O. (2005). Phytase activity along the digestive tract of the broiler chick: A comparative study of an Escherichia coli-derived and Peniophora lycii phytase. Canadian Journal of Animal Science. Vol. 85, pp. 61–68. Available at: https://doi.org/10.4141/a04-067.

34. Zeller, E., Schollenberger, M., Kühn, I., Rodehutscord, M. (2015). Hydrolysis of phytate and formation of inositol phosphate isomers without or with supplemented phytases in different segments of the digestive tract of broilers. Journal of Nutritional Science. Vol. 4. Available at: https://doi.org/10.1017/jns.2014.62.

35. Mothes, R., Schwenke, K. D., Zirwer, D., Gast, K. (1990).  Rapeseed protein – polyanion interactions. Soluble complexes between the 2 S protein fraction (napin) and phytic acid. Food / Nahrung. Vol. 34, pp. 375–385. Available at: https://doi.org/10.1002/food.19900340422.

36. Peter, C. M., Parr, T. M., Webel, D. M., Baker, D. H. (2001). The effects on phytase on growth performance, carcass characteristics, and bone mineralization of late-finishing pigs fed maize-soyabean meal diets containing no supplemental phosphorus, zinc, copper and manganese. Animal Feed Science and Technology. Vol. 94, pp. 199–205. Available at: https://doi.org/10.1016/s0377-8401(01)00300-5.

37. Adeola, O., Cowieson, A.J. (2011). Board-invited review: opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. Journal of Animal Science. Vol. 89, pp. 3189–3218. Available at: https://doi.org/10.2527/jas.2010-3715.

38. Rutherfurd, S.M., Chung, T.K., Moughan, P.J. (2002). The effect of microbial phytase on ileal phosphorus and amino acid digestibility in the broiler chicken. British Poultry Science. Vol. 43, pp. 598–606. Available at: https://doi.org/10.1080/0007166022000004516.

39. Rutherfurd, S. M., Chung, T. K., Thomas, D. V., Zou, M. L., Moughan, P. J. (2012). Effect of a novel phytase on growth performance, apparent metabolizable energy, and the availability of minerals and amino acids in a low-phosphorus corn-soybean meal diet for broilers. Poultry Science. Vol. 91, pp. 1118–1127. Available at: https://doi.org/10.3382/ps.2011-01702.

40. Sebastian, S., Touchburn, S.P., Chavez E. R., Lague, P. C. (1997). Apparent digestibility of protein and amino acids in broiler chickens fed a corn–soybean diet supplemented with microbial phytase. Poultry Science. Vol. 76, pp. 1760–1769. Available at: https://doi.org/10.1093/ps/76.12.1760.

41. Wu, D., Wu, S.B., Choct, M., Swick, R.A. (2015). Comparison of 3 phytases on energy utilization of a nutritionally marginal wheat-soybean meal broiler diet. Poultry Science. Vol. 94, pp. 2670–2676. Available at: https://doi.org/ 10.3382/ps/pev222.

42. Cowieson, A.J. (2010). Strategic Selection of Exogenous Enzymes for Corn/soy-based Poultry Diets. The Journal of Poultry Science. Vol. 47, pp. 1–7. Available at: https://doi.org/10.2141/jpsa.009045.

43. Tran, T.T. (2010). Thermostable phytase from a Bacillus sp. Doctoral Thesis. Department of Biotechnology. Lund University. Sweden, 124 p. Available at: https://portal.research.lu.se/portal/files/5618703/1730199.pdf

44. Oh, B.C., Choi, W.-C., Park, S., Kim, Y.-O., Oh, T.K. (2004). Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Applied Microbiology and Biotechnology. Vol. 63, pp. 362–372. Available at: https://doi.org/10.1007/s00253-003-1345-0.

45. Vasquez, M.V., Glitsoe, V. Phytase Unit Myth! Available at: https://www.dsm.com/content/dam/dsm/anh/en_US/ documents/2012_Phytase_unit_myths.pdf (Accessed 14 May 2019)

46. Leske, K., Coon, C. (1999). A bioassay to determine the effect of phytase on phytate phosphorus hydrolysis and total phosphorus retention of feed ingredients as determined with broilers and laying hens. Poultry Science. Vol. 78, pp. 1151–1157. Available at: https://doi.org/10.1093/ps/78.8.1151.

47. Kornegay, E.T. Digestion of phosphorus and other nutrients: the role of phytases and factors influencing their activity. Enzymes in farm animal nutrition. pp. 237–271. Available at: https://doi.org/10.1079/9780851993935.0237.

48. Butani, J. B., Parnerkar, S. (2015). Role of microbial phytase in broiler nutrition- A review. Journal of Livestock Science. Vol. 6, pp. 113–118. Available at: http://livestockscience.in/wp-content/uploads/phytase-broiler.pdf (Accessed 21 May 2019).

49. Rao, D. E. C. S., Rao, K. V., Reddy, T. P., Reddy, V. D. (2009). Molecular characterization, physicochemical properties, known and potential applications of phytases: An overview. Critical Reviews in Biotechnology. Vol. 29, pp. 182–198. Available at: https://doi.org/10.1080/07388550902919571.

50. Gontia-Mishra I., Tiwars, S. (2013). Molecular Characterization and Comparative Phylogenetic Analysis of Phytases from Fungi with Their Prospective Applications. Food Technology and Biotechnology. Vol. 51, pp. 313–326.

51. Elkhalil, K.A.I., Manner, K., Borriss, O.R., Simon, O. (2007). In vitro and in vivo characteristics of bacterial phytases and their efficacy in broiler chickens. British Poultry Science. Vol. 48, pp. 64–70. Available at: https://doi.org/10.1080/00071660601148195.

52. Wyss, M., Brugger, R., Kronenberger, A., Rémy, R., Fimbel, R., Oesterhelt, G., Lehmann, M., van Loon, A. P. (1999). Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Applied and environmental microbiology. Vol. 65(2), pp. 367–373. Available at: PubMed PMID: 9925555; PubMed Central PMCID: PMC91034.

53. Vasquez, M.V., Glitsoe, V. Phytase Unit Myth! Available at: https://www.dsm.com/content/dam/dsm/anh/ en_US/documents/2012_Phytase_unit_myths.pdf (Accessed 14 May 2019)

AttachmentSize
PDF icon reshetnichenko_1_2019.pdf588.91 KB