You are here

OBTAINING ZINC ENRICHED SPIRULINA BIOMASS AND ESTABLISHING ITS TOXICITY

The effect of different zinc concentrations in the standard nutrient medium Zarruka on the intensity of Spirulina platensis biomass growth is being stuided. Enrichment of spirulina was made by introducing various concentrations of zinc sulphate – from 6.0 to 24.6 mg/l into standard nutrient medium Zarruka. Adding zinc sulfate in a dose of 6.0 mg/l to the cultivation medium manifests stimulating effect on Spirulina platensis cell growth, and then due to accumulation of metal manifests its toxic effect. Adding high doses of Zinc to the nutrient medium leads to a sharp decrease of Spirulina biomass growth and to cell death from the eighth day.

While exploring the acute toxicity of Spirulina platensis biomass, enriched with Zinc at a dose of 5000 mg/kg, by intragastric administration to rats and white mice, there were not observed animal deaths. Clinical response both white mice and rats to Spirulina platensis biomass, enriched with Zinc, was similar. In both cases, even repeated administration of high-dose supplements in the amount of 5000 mg/kg per body weight was not fatal. Under these conditions, the Spirulina biomass in concentrations up to 5000 mg/kg of body weight really matters (DL0).

Key words: biomass, white mice, white rats, culture medium, Spirulina platensis, Zinc.

1. GOST 12.1.007–76. Sistema standartov bezopasnosti truda. Vrednye veshhestva. Klassifikacija i obshhie trebovanija bezopasnosti. – Vved. 1977–01–01. – M.: Standartinform, 2007. – 7 s.

2. Micronutrients in African-Americans with decompensated and compensated heart failure / M. Arroyo, S.P. LaGuardia, S.K. Bhattacharya [et al.] // Transl. Res. – 2006. – Vol. 148. – P. 301–308.

3. Ben Amotz A. Mode of action of the massively accumulated beta-carotene of Dunaliella bardawil in protecting the algae against damage by excess irradiation / A. Ben Amotz, O. Shaish, M. Avron // Plant Phisiol. – 1989. – Vol. 9, № 3. – P. 1040–1043.

4. Commercial interest of micro- and macroalgae / S. Bonotto, D. Van der Ben, A. Sanfulli [et al.] // Mar. Res. Div. Rapt. – 1987. – Vol. 602. – P. 116–117.

5. Brzóska M.M. Interactions between cadmium and zinc in the organism / M.M. Brzóska, J. Moniuszko // Food Chem. Toxicol. – 2001. – Vol. 39. – P. 967–980.

6. Cousins R.J. Mammalian zinc transport, trafficking, and signals / R.J. Cousins, J.P. Liuzzi, L.A. Lichten // Journal of Biological Chemistry. – 2006. – Vol. 281. – P. 24085–24089.

7. Long-term zinc deficiency decreases taste sensitivity in rats / T. Goto, M. Komai, H. Suzuki, Y. Furukawa // J. Nutr. – 2001. – Vol. 131. – P. 305–310.

8. Gupta R.S. Biotechnology of mass production of Spirulina and Arthrospira in fresh water / R.S. Gupta, M.L. Changwal // Spirulina ETTA Nat. Symp. MCRC. – Madras, India, 1992. – P. 125–128.

9. Krebs N.F. Overview of zinc absorption and excretion in the human gastrointestinal tract / N.F. Krebs // J. Nutr. – 2000. – Vol. 130. – P. 1374–1377.

10. McClain C.J. The pancreas and zinc homeostasis / C.J. McClain // J. Lab. Clin. Med. – 1990. – Vol. 116. – P. 275–276.

11. Vallee B.L. Zinc: biochemistry, physiology, toxicology and clinical pathology / B.L. Vallee // Biofactors. – 1988. – Vol. 1. – P. 31–36.

12. Van Wouwe J.P. The role of the pancreas in the regulation of zinc status / J.P. Van Wouwe, J.J.M. Uijlenbroek // Biol. Trace Elem. Res. – 1994. – Vol. 42. – P. 143–150.

13. Vencataraman L.V. Production of food, feed, biochemical and bioenergy from microalgae / L.V. Vencataraman,
E.W. Becker // 8-th Int. Biotechnol. Symp., Paris, 1988; Proc. – Paris, 1989. – Vol. 2. – P. 910–922.

AttachmentSize
PDF icon merzlova.pdf418.93 KB