You are here

Use of nanoparticles of metals and non-metals in poultry farming

The presented analytical review summarizes the data of the world and national literature on the features of the accumulation of microelement nanoparticles in the body, their effects on metabolism, redox processes and productivity of poultry.

The attention is paid to the toxicity of various forms and sources of the considered elements, their mutual influence on bioavailability, antagonism and the rate of excretion. The need to study the peculiarities of the use of nanoparticles and their efficiency in the production of livestock products is constantly increasing. Evidence of the positive application of nanoforms of elements (zinc, silver, selenium, cerium, iron) in the diets of different species of farm poultry is considered due to their metabolic, antimicrobial action, influence on digestion and regulation of bowel function. Analyzed data indicate that nanoparticles of metals and non-metals in animal husbandry are an alternative to feed antibiotics for antibacterial action, increase the productivity of animals and poultry, can activate metabolism by stimulating the activity of hormones, optimize the immune response of the organism, induce syntheses and metabolism. Nanoparticles of metals and non-metals have been found to reduce the mineral antagonism in case of contact with the intestine, which contributes to the efficiency of digestion. Changes in the prooxidant-oxidant status of the blood of animals by the use of test nanoparticles and changes in homeostasis indices that are positive for poultry due to increased productivity, intensification of egg production, their weight and fertilization rate of hatching eggs have been established. Influence of nanoparticles on redox homeostasis and processes of lipid and protein peroxidation are established. The use of nanoscale drugs for use in biology, medicine, veterinary medicine, agriculture, and the need for further research to study all possible mechanisms of biological action of nanostructures are argued.

Key words: trace elements, nanoparticles, poultry, feeding, silver, zinc, selenium, cerium dioxide.

  1. Borisevich, V.B. Kaplunenko, V.G., Kosinov, N.V. (2012). Nanomaterialyi i nanotehnologii v veterinarnoy praktike [Nanomaterials and nanotechnology in veterinary practice]. K.: VD AvItsena, 512 p.
  2. Nishchemenko, M.P., Kaplunenko, V.H.,  Kozii, V.I., Poroshynska, O.A., Stovbetska, L.S., Yemelianenko, A.A., Omelchuk, O.V. (2019). Pokaznyky mineralnoho obminu v kurok-nesuchok za vplyvu nanokhelativ selenu i tsynku ta vitaminu E [The indexes of mineral exchange in laying hens under the influence of Selenium and Zinc nanoaquahelates and vitamin E]. Naukovyi visnyk veterynarnoi medytsyny [Scientific Bulletin of Veterinary Medicine]. no. 1, pp. 49–56. Available at: http://doi.org/10.33245/2310-4902-2019-149-1-49-56
  3. Romanova, A.P., Titova, V.V., Makaeva, A.M. (2018). Osobennosti primeneniya nanorazmernyih form mikroelementov v selskom hozyaystve [Features of the use of nanoscale forms of trace elements in agriculture (review)]. Zhivotnovodstvo i kormoproizvodstvo [Livestock and feed production]. Vol. 101(2), pp. 237–250.
  4. Spivak, M.Ia., Demchenko, O.A., Zholobak, N.M., Shcherbakov, O.B., Zotsenko, V.M., Ivanov, V.K. (2013). Vplyv nanokrystalichnoho dioksydu tseriiu na yaiechnu produktyvnist perepeliv [Effect of nanocrystalline cerium dioxide on egg performance of quail]. Suchasne ptakhivnytstvo [Modern poultry farming].Vol. 3, pp. 22–24.
  5. Spivak, M.Ia., Oksamytnyi, V.M., Demchenko, O.A., Zholobak, N.M., Shcherbakov, O.B., Ivanov, V.K., Poperechna, S.H. Hrynevych, O.I. (2013). Vplyv nanochastynok dioksydu tseriiu na intensyvnist rostu ta spozhyvannia kormiv molodniakom perepilok [Influence of cerium dioxide nanopaticles on intensity of growth and feed intake of young quails]. Veterynarna medytsyna [Veterinary medicine]. Vol. 97, pp. 470–472.
  6. Shadura, Yu.M., Bitiutskyi, V.S., Spivak, M.Ia., Melnychenko, O.M., Shcherbakov, O.B., Demchenko, O.A. Zholobak, N.M. (2015). Doklinichni doslidzhennia hostroi toksychnosti nanokrystalichnoho dioksydu tseriiu [Preclinical studies of acute toxicity of nanocrystalline cerium dioxide]. Visnyk ZhNAEU [Bulletin of ZhNAEU]. Vol. 2 (50), рр. 358–363.
  7. Shadura, Yu.M., Spivak, M.Ia., Bitiutskyi, V.S., Melnychenko, O.M., Sotnichenko, I., Shcherbakov, O., Demchenko, O. Zholobak, N. (2015). Biokhimichni pokaznyky ta produktyvni yakosti kurei-nesuchok za vykorystannia nanochastynok dioksydu tseriiu [Biochemical parameters and productive qualities of laying hens for the use of cerium dioxide nanoparticles]. Tekhnolohiia vyrobnytstva i pererobky produktsii tvarynnytstva [Technology of production and processing of livestock products].Vol. 2 (120), pp. 174–177.
  8. Abbasi, M., Dastar, B., Afzali, N., Shargh, S.M., Hashemi, S.R. (2017). Zinc requirements of Japanese quails (Coturnix coturnix japonica) by assessing dose-evaluating response of zinc oxide nano-particle supplementation’. Poultry Science Journal. Vol. 5(2), pp. 131–143. Available at: http://doi.org/10.22069/psj.2017.13227.1262.
  9. Abedini, M., Shariatmadari, F., Torshizi, M.A.K., Ahmadi, H. (2018). Effects of zinc oxide nanoparticles on the egg quality, immune response, zinc retention, and blood parameters of laying hens in the late phase of production. Journal of Animal Physiology and Animal Nutrition. Vol. 102 (2), pp. 1–10. Available at: http://doi.org/10.111/jpn.12871.
  10. Adu, O.A., Igbasan, F.A. Adebiyi, O.A. (2011). Effect of dietary rare earth element on performance and carcass characteristics of broiler. Journal of Sustainable Technology. Vol. 2, pp. 118–126. Available at: http://doi.org/10.1111/j.1439-0396.2008.00884.x.
  11. Ahmad, S., Munir, S., Zeb, N., Ullah, A., Khan, B., Ali, J., Ali, S. (2019). Green nanotechnology: a review on green synthesis of silver nanoparticles – an ecofriendly approach. International journal of nanomedicine. Vol. 14, pp. 5087. Available at: http://doi.org/10.2147 / IJN.S200254
  12. Ahmadi, M., Ahmadian, A., Seidavi, A.R. (2018). Effect of Different Levels of Nano-selenium on Performance, Blood Parameters, Immunity and Carcass Characteristics of Broiler Chickens. Poultry Science Journal. Vol. 6(1), pp. 99–108. Available at:http://doi.org/ 10.22069/PSJ.2018.13815.1276.
  13. Albrecht, M.A., Evans, C.W., Raston, C.L. (2006). Green chemistry and the health implications of nanoparticles. Green chemistry. Vol. 8(5), pp. 417–432. Available at:http://doi.org/  10.1039/B517131H.
  14. Aparna, N., Karunakaran, R. (2016). Effect of Selenium Nanoparticles Supplementation on Oxidation Resistance of Broiler Chicken. Indian Journal of Science and Technology. Vol. 9(S1), pp. 1–5. Available at:http://doi.org/ 10.17485 / ijst / 2016 / v9iS1 / 106334
  15. Asheer, M., Manwar, S.J., Gole, M.A., Sirsat, S., Wade, M.R., Khose, K.K. Sajid, S. (2018). Effect of dietary nano zinc oxide supplementation on performance and zinc bioavailability in broilers. Indian Journal of Poultry Science. Vol. 53(1), pp. 70–75. Available at:http://doi.org/ 10.5958/0974-8180.2018.00004.1
  16. Bami, M.K., Afsharmanesh, M., Salarmoini, M., Tavakoli, H. (2018). Effect of zinc oxide nanoparticles and Bacillus coagulans as probiotic on growth, histomorphology of intestine, and immune parameters in broiler chickens. Comparative Clinical Pathology. Vol. 27(2), pp. 399–406. Available at:http://doi.org/10.1007/s00580-017-2605-1.
  17. Bhanja, S., Hotowy, A., Mehra, M., Sawosz, E., Pineda, L., Vadalasetty, K., Kurantowicz, N. Chwalibog, A. (2015). In ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos. International journal of molecular sciences. Vol. 16(5), pp. 9484–9503. Available at:http://doi.org/ 10.3390/ijms16059484.
  18. Bityutsky, V., Tsekhmistrenko, O., Tsekhmistrenko, S., Spyvac, M. Shadura, U. (2017). Perspectives of cerium nanopaticles use in agriculture. The Animal Biology. Vol. 19 (3), pp. 9–18. Available at:http://rep.btsau.edu.ua/ handle/BNAU/1300.
  19. Bityutskyy, V., Tsekhmistrenko, S., Tsekhmistrenko, O., Melnychenko, O., Kharchyshyn, V. (2019). Effects of Different Dietary Selenium Sources Including Probiotics Mixture on Growth Performance, Feed Utilization and Serum Biochemical Profile of Quails. In: Nadykto V. (eds) Modern Development Paths of Agricultural Production. Springer, Cham. pp. 623–632. Available at:https://doi.org/10.1007/978-3-030-14918-5_61
  20. Bölükbaşı, S.C., Al‐sagan, A.A., Ürüşan, H., Erhan, M.K., Durmuş, O. Kurt, N. (2016). Effects of cerium oxide supplementation to laying hen diets on performance, egg quality, some antioxidant enzymes in serum and lipid oxidation in egg yolk. Journal of animal physiology and animal nutrition. Vol. 100(4), pp. 686–693. Available at:http://doi.org/10.1111/jpn.12429.
  21. Boostani, A., Sadeghi, A.A., Mousavi, S.N., Chamani, M. Kashan, N. (2015). Effects of organic, inorganic, and nano-Se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress. Livestock science. Vol. 178, pp. 330–336. Available at:https://doi.org/10.1016/j.livsci.2015.05.004i.
  22. Boostani, A., Sadeghi, A.A., Mousavi, S.N., Chamani, M. Kashan, N. (2015). The effects of organic, inorganic, and nano-selenium on blood attributes in broiler chickens exposed to oxidative stress. Acta Scientiae Veterinariae. Vol. 43, pp. 1–6.
  23. Cai, S.J., Wu, C.X., Gong, L.M., Song, T., Wu, H., Zhang, L.Y. (2012). Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poultry Science. Vol. 91(10), pp. 2532–2539. Available at:http://doi.org/10.3382/ps.2012-02160.
  24. Choi, S.J., Choy, J.H. (2014). Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction. International journal of nanomedicine. 9(Suppl 2), pp. 261–269. Available at:http://doi.org/10.2147/IJN.S57920.
  25. Das, R.K., Pachapur, V.L., Lonappan, L., Naghdi, M., Pulicharla, R., Maiti, S., .Brar, S. K. (2017). Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnology for Environmental Engineering. Vol. 2(1), 18 p. Available at:https://doi.org/10.1007/s41204-017-0029-4
  26. Duffy, L.L., Osmond-McLeod, M.J., Judy, J., King, T. (2018). Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food control. Vol. 92, pp. 293–300.  Available at:https://doi.org/10.1016/j.foodcont.2018.05.008.
  27. El-Katcha, M., Soltan, M.A. El-Badry, M. (2017). Effect of Dietary Replacement of Inorganic Zinc by Organic or Nanoparticles Sources on Growth Performance, Immune Response and Intestinal Histopathology of Broiler Chicken. Alexandria Journal for Veterinary Sciences. Vol. 55(2), pp. 129–145. Available at:https://doi.org/10.5455/ajvs.266925.
  28. Fathi, M. (2016). Effects of zinc oxide nanoparticles supplementation on mortality due to ascites and performance growth in broiler chickens. Iranian Journal of Applied Animal Science. Vol. 6(2), pp. 389–394.
  29. Fawaz, M.A., Südekum, K.H., Hassan, H.A. Abdel-Wareth, A.A. (2019). Effects of nanoparticles of zinc oxide on productive performance of laying hens.–a review. SVU-International Journal of Agricultural Sciences. Vol. 1(1), pp. 13–20.
  30. Felehgari, K., Ahmadi, F., Rokhzadi, A., Kurdestany, A.H., Khah, M.M. (2013). The effect of dietary silver nanoparticles and inorganic selenium supplementation on performance and digestive organs of broilers during starter period. Bull. Env. Pharmacol. Life Sci. Vol. 2(8), pp. 104–108.
  31. Geraets, L., Oomen, A.G., Krystek, P., Jacobsen, N.R., Wallin, H., Laurentie, M., Verharen, H.W., Brandon, E.F., de Jong, W.H. (2014). Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Particle and fibre toxicology. Vol. 11(1), 30 p. Available at:https://doi.org/10.1186/1743-8977-11-30.
  32. Gong, Z. (1996). A study of feeding Rare Earth Elements to broiler-type breeding bird. Chinese Poultry. Vol. 7, 43 p. Available at:https://doi.org/10.3382/japr/pfv052.
  33. Gopi, M., Pearlin, B., Kumar, R.D., Shanmathy, M., Prabakar, G. (2017). Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. Int J Pharmacol. Vol. 13, pp. 724–731. Available at:https://doi.org/10.3923/ijp.2017.724.731.
  34. Gulyás, G., Csosz, E., Prokisch, J., Jávor, A., Mézes, M., Erdélyi, M., Balogh, K., Janáky, T., Szabó, Z., Simon, A., Czeglédi, L. (2017). Effect of nano‐sized, elemental selenium supplement on the proteome of chicken liver. Journal of animal physiology and animal nutrition. Vol. 101(3), pp. 502–510. Available at:https://doi.org/10.1111/jpn.12459.
  35. Hafez, A., Nassef, E., Fahmy, M., Elsabagh, M., Bakr, A., Hegazi, E. (2019). Impact of dietary nano-zinc oxide on immune response and antioxidant defense of broiler chickens. Environmental Science and Pollution Research. pp. 1–7. Available at:https://doi.org/10.1007/s11356-019–04344-6.
  36. He, M.L., Chang, J., Arnold, R., Henkelmann, R., Lin, X., Süss, A., Rambeck, W.A. (1999). Studies on the effect of rare earth elements in piglets. Mengen und Spurenelemente. Vol. 19, pp. 3–4.
  37. He, M.L., Wehr, U., Rambeck, W.A. (2010). Effect of low doses of dietary rare earth elements on growth performance of broilers. Journal of animal physiology and animal nutrition. Vol. 94(1), pp. 86–92. Available at:https://doi.org/10.1111/j.1439-0396.2008.00884.x.
  38. Holtzclaw, W. D., Dinkova-Kostova, A. T., Talalay, P. (2004). Protection against electrophile and oxidative stress by induction of phase 2 genes: the quest for the elusive sensor that responds to inducers. Advances in enzyme regulation. Vol. 44(1), pp. 335–367. Available at:https://doi.org/10.1016/j.advenzreg.2003.11.013
  39. Hu, Z., Richter, H., Sparovek, G., Schnug, E. (2004). Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. Journal of plant nutrition. Vol. 27(1), pp. 183–220. Available at: https://doi.org/10.1081/PLN-120027555.
  40. Hulla, J.E., Sahu, S.C. Hayes, A.W. (2015). Nanotechnology: History and future. Human & experimental toxicology. Vol. 34(12), pp. 1318–1321. Available at: https://doi.org/10.1177/0960327115603588.
  41. Ibrahim, D., Ali, H.A., El-Mandrawy, S.A. (2017). Effects of different zinc sources on performance, bio distribution of minerals and expression of genes related to metabolism of broiler chickens. Zagazig Vet J. Vol. 45, pp. 292–304. Available at:https://doi.org/ 10.5281/zenodo.1000462.
  42. Joshua, P.P., Valli, C., Balakrishnan, V. (2016). Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken. Veterinary world. Vol. 9(3), pp. 287–294. Available at: https://doi.org/10.14202/vetworld.2016.287-294.
  43. Jóźwik, A., Marchewka, J., Strzałkowska, N., Horbańczuk, J., Szumacher-Strabel, M., Cieślak, A., Lipińska-Palka, P., Józefiak, D., Kamińska, A., Atanasov, A. (2018). The effect of different levels of Cu, Zn and Mn nanoparticles in hen turkey diet on the activity of aminopeptidases. Molecules. Vol. 23(5), 1150 p. Available at: https://doi.org/10.3390/molecules23051150.
  44. Khalid, N., Ahmed, A., Bhatti, M.S., Randhawa, M.A., Ahmad, A., Rafaqat, R. (2014). A question mark on zinc deficiency in 185 million people in Pakistan – possible way out. Critical reviews in food science and nutrition. Vol. 54(9), pp. 1222–1240. Available at: https://doi.org/10.1080/10408398.2011.630541.
  45. Kharissova, O.V., Dias, H.R., Kharisov, B.I., Perez, B.O., Perez, V.M.J. (2013). The greener synthesis of nanoparticles. Trends in biotechnology. Vol. 31(4), pp. 240–248. Available at: https://doi.org/10.1016/j.tibtech.2013.01.003
  46. Khatami, M., Alijani, H.Q., Sharifi, I. (2018). Biosynthesis of bimetallic and core–shell nanoparticles: their biomedical applications–a review. IET nanobiotechnology. Vol. 12(7), pp. 879–887. Available at: https://doi.org/10.1049 / iet-nbt.2017.0308
  47. King, J.C. (2011). Zinc: an essential but elusive nutrient. The American journal of clinical nutrition. Vol. 94(2), pp. 679–684.  Available at: https://doi.org//10.3945/ajcn.110.005744.
  48. Klochkov, V.K., Malyshenko, A.I., Sedykh, O.O., Malyukin, Y.V. (2011). Wet chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO₄: Eu³⁺(Re= La, Gd, Y) with rod-like and spindle-like shape. Functional materials. Vol. 1, pp. 111–115.
  49. Kool, P.L., Ortiz, M.D., van Gestel, C.A. (2011). Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environmental Pollution. Vol. 159(10), pp. 2713–2719. Available at: https://doi.org/10.1016/j.envpol.2011.05.021.
  50. Kulak, E., Ognik, K., Stępniowska, A., Sembratowicz, I. (2018). The effect of administration of silver nanoparticles on silver accumulation in tissues and the immune and antioxidant status of chickens. Journal of Animal and Feed Sciences. Vol. 27(1), pp. 44–54. Available at:https://doi.org/10.22358/jafs/84978/2018.
  51. Lansdown, A.B. (2010). A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Advances in pharmacological sciences. 16 p.  Available at: https://doi.org/10.1155/2010/910686.
  52. Li, J.L., Zhang, L., Yang, Z.Y., Zhang, Z.Y., Jiang, Y., Gao, F., Zhou, G.H. (2018). Effects of different selenium sources on growth performance, antioxidant capacity and meat quality of local Chinese Subei chickens. Biological trace element research. Vol. 181(2), pp. 340–346. Available at: https://doi.org/10.1007/s12011-017-1049-439.
  53. Lina, T., Jianyang, J., Fenghua, Z., Huiying, R., Wenli, L. (2009). Effect of nano-zinc oxide on the production and dressing performance of broiler. Chinese Agricultural Science Bulletin. Vol. 2(003).
  54. Liu, S., Tan, H., Wei, S., Zhao, J., Yang, L., Li, S., Zhong, C., Yin, Y., Chen, Y. Peng, Y. (2015). Effect of selenium sources on growth performance and tissue selenium retention in yellow broiler chicks. Journal of applied animal research. Vol. 43(4), pp. 487–490. Available at: https://doi.org/10.1080/09712119.2014.978780.
  55. Magesh, S., Chen, Y., Hu, L. (2012). Small Molecule Modulators of K eap1‐N rf2‐ARE Pathway as Potential Preventive and Therapeutic Agents. Medicinal research reviews. Vol. 32(4), pp. 687–726. Available at: https://doi.org/10.1002/med.21257
  56. Mahmoud, H.E.D., Ijiri, D., Ebeid, T.A., Ohtsuka, A. (2016). Effects of dietary nano-selenium supplementation on growth performance, antioxidative status, and immunity in broiler chickens under thermoneutral and high ambient temperature conditions. The Journal of Poultry Science. p.0150133. Available at: https://doi.org/10.2141/jpsa.0150133.
  57. Mao, S.Y. Lien, T.F. (2017). Effects of nanosized zinc oxide and γ-polyglutamic acid on eggshell quality and serum parameters of aged laying hens. Archives of animal nutrition. Vol. 71(5), pp. 373–383. Available at: https://doi. org/10.1080/1745039X.2017.1355600.
  58. McShan, D., Ray, P.C., Yu, H. (2014). Molecular toxicity mechanism of nanosilver. Journal of food and drug analysis. Vol. 22(1), pp. 116–127. Available at: https://doi.org/10.1016/j.jfda.2014.01.010.
  59. Mishra, A., Swain, R.K., Mishra, S.K., Panda, N., Sethy, K. (2014). Growth performance and serum biochemical parameters as affected by nano zinc supplementation in layer chicks. Indian J. Anim. Nutr. Vol. 31(4), pp. 384–388.
  60. Mohammadi, F., Ahmadi, F., Amiri, A.M. (2015). Effect of zinc oxide nanoparticles on carcass parameters, relative weight of digestive and lymphoid organs of broiler fed wet diet during the starter period. International Journal of Biosciences. Vol. 6(2), pp. 389–394.  Available at: https://doi.org/10.12692/ijb/6.2.389-394.
  61. Mohammadi, H., Farzinpour, A., Vaziry, A. (2017). Reproductive performance of breeder quails fed diets supplemented with L‐cysteine‐coated iron oxide nanoparticles. Reproduction in Domestic Animals. Vol. 52(2), pp. 298–304. Available at: https://doi.org/10.1111/rda.12902.
  62. Mohammadi, V., Ghazanfari, S., Mohammadi-Sangcheshmeh, A., Nazaran, M.H. (2015). Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. British poultry science. Vol. 56(4), pp. 486–493. Available at: https://doi.org/10.1080/00071668.2015.1064093.
  63. Mohan, P., Mala, R. (2019). May. A review on the effect of ZnO nanomaterial as supplement in poultry farming. In AIP Conference Proceedings. Vol. 2105, no. 1, pр. 020030. AIP Publishing. Available at: https://doi.org/10.1063/1.5100715.
  64. Mohapatra, P., Swain, R.K., Mishra, S.K., Behera, T., Swain, P., Mishra, S.S., Behura, N.C., Sabat, S.C., Sethy, K., Dhama, K., Jayasankar, P. (2014). Effects of dietary nano-selenium on tissue selenium deposition, antioxidant status and immune functions in layer chicks. Int J Pharmacol. Vol. 10(3), pp. 160–167.
  65. Ognik, K., Cholewińska, E., Czech, A., Kozłowski, K., Nowakowicz-Dębek, B., Szlązak, R., Tutaj, K. (2016). Effect of silver nanoparticles on the immune, redox, and lipid status of chicken blood. Czech Journal of Animal Science. Vol. 61(10), pp. 450–461. Available at: https://doi.org/10.17221/80/2015-CJAS.
  66. Ognik, K., Stępniowska, A., Cholewińska, E., Kozłowski, K. (2016). The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poultry science. Vol. 95(9), pp. 2045–2051. Available at: https://doi.org/10.3382/ps/pew200.
  67. Olgun, O., Yildiz, A.Ö. (2017). Effects of dietary supplementation of inorganic, organic or nano zinc forms on performance, eggshell quality, and bone characteristics in laying hens. Annals of Animal Science. Vol. 17(2), pp. 463–476. Available at:https://doi.org/10.1515/aoas-2016–0055.
  68. Ou, X., Guo, Z., Wang, J. (2000). The effects of rare earth element additive in feed on piglets. Livestock and Poultry Industry. Vol. 4(2), pp. 21–22.
  69. Pal, G., Rai, P., Pandey, A. (2019). Green synthesis of nanoparticles: A greener approach for a cleaner future. In Green Synthesis, Characterization and Applications of Nanoparticles, pp. 1–26. Elsevier. Available at: https://doi.org/ 10.1016/B978-0-08-102579-6.00001-0
  70. Pandav, P.V., Puranik, P.R. (2015). Trials on metal enriched Spirulina platensis supplementation on poultry growth. Glob J Bio-Science Technol. Vol. 4, pp. 128–134.
  71. Peng, D., Zhang, J., Liu, Q., Taylor, E.W. (2007). Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. Journal of Inorganic Biochemistry. Vol. 101(10), pp. 1457–1463. Available at:https://doi.org/10.1016/j.jinorgbio.2007.06.021.
  72. Pieniz, S., Okeke, B.C., Andreazza, R., Brandelli, A. (2011). Evaluation of selenite bioremoval from liquid culture by Enterococcus species. Microbiol. Res. Vol. 166, pp. 176–185. Available at: https://doi.org/10.1016/j.micres.2010.03.005
  73. Pineda, L., Chwalibog, A., Sawosz, E., Hotowy, A., Elnif, J., Sawosz, F. (2012). Investigating the effect of in ovo injection of silver nanoparticles on fat uptake and development in broiler and layer hatchlings. Journal of Nanotechnology. Available at: https://doi.org/10.1155/2012/212486.
  74. Pineda, L., Sawosz, E., Hotowy, A., Elnif, J., Sawosz, F., Ali, A., Chwalibog, A. (2012). Effect of nanoparticles of silver and gold on metabolic rate and development of broiler and layer embryos. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. Vol. 161(3), pp. 315–319. Available at: https://doi.org/10.1016/j.cbpa.2011.11.013.
  75. Rajendran, D., Thulasi, A., Jash, S., Selvaraju, S., Rao, S.B.N. (2013). Synthesis and application of nano minerals in livestock industry. Animal Nutrition and Reproductive Physiology (Recent Concepts). Satish Serial Publishing House, Delhi. pp. 517–530.
  76. Ramiah, S.K., Awad, E.A., Mookiah, S., Idrus, Z. (2019). Effects of zinc oxide nanoparticles on growth performance and concentrations of malondialdehyde, zinc in tissues, and corticosterone in broiler chickens under heat stress conditions. Poultry science. pp. 1–11. Available at: https://doi.org/10.3382/ps/pez093.
  77. Ravikumar, S., Gokulakrishnan, R. (2012). The inhibitory effect of metal oxide nanoparticles against poultry pathogens. International Journal of Pharmaceutical Sciences and Drug Research. Vol. 4(2), pp. 157–159.
  78. Sagar, P.D., Mandal, A.B., Akbar, N., Dinani, O.P. (2018). Effect of different levels and sources of zinc on growth performance and immunity of broiler chicken during summer. International Journal of Current Microbiology and Applied Sciences. Vol. 7(5), pp. 459–471. Available at: https://doi.org/10.20546/ijcmas.2018.705.058.
  79. Saini, K., Tomar, S.K., Sangwan, V., Bhushan, B. (2014). Evaluation of lactobacilli from human sources for uptake and accumulation of selenium. Biol. Trace Elem. Res. Vol. 160, pp. 433–436. Available at: https://doi.org/10.1007/s12011-014-0065-x
  80. Saki, A.A., Abbasinezhad, M., Rafati, A.A. (2014). Iron nanoparticles and methionine hydroxy analogue chelate in ovo feeding of broiler chickens. International Journal of Nanoscience and Nanotechnology. Vol. 10(3), pp. 187–196.
  81. Salah-Eldin, T.A., Hamady, G.A.A., Abdel-Moneim, M.A., Farroh, K.Y., El-Reffaei, W.H.M. (2015). Nutritional evaluation of Selenium-methionine nanocomposite as a novel dietary supplement for laying hens. J. Anim. Health Prod. Vol. 3(3), pp. 64–72. Available at: https://doi.org/10.14737/journal.jahp/2015/3.3.64.72.
  82. Saleh, A.A. (2014). Effect of dietary mixture of Aspergillus probiotic and selenium nano-particles on growth, nutrient digestibilities, selected blood parameters and muscle fatty acid profile in broiler chickens. Anim Sci Pap Rep. Vol. 32, pp. 65–79.
  83. Sanjay, S.S. (2019). Safe nano is green nano. In Green Synthesis, Characterization and Applications of Nanoparticles, pp. 27–36. Elsevier. Available at: https://doi.org/10.1016/B978-0-08-102579-6.00002-2
  84. Sardar, M., Mazumder, J.A. (2019). Biomolecules Assisted Synthesis of Metal Nanoparticles. In Environmental Nanotechnology. pp. 1–23. Springer, Cham. Available at: https://doi.org/10.1007/978-3-319-98708-8_1
  85. Sarkar, B., Bhattacharjee, S., Daware, A., Tribedi, P., Krishnani, K.K., Minhas, P.S. (2015). Selenium nanoparticles for stress-resilient fish and livestock. Nanoscale research letters. Vol. 10(1), 371 p. Available at: https://doi.org/10.1186/ s11671-015-1073-2.
  86. Sawosz, E., Binek, M., Grodzik, M., Zielińska, M., Sysa, P., Szmidt, M., Niemiec, T., Chwalibog, A. (2007). Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Archives of Animal Nutrition. Vol. 61(6), pp. 444–451. Available at: https://doi.org/10.1080/17450390701664314.
  87. Sawosz, F., Pineda, L., Hotowy, A., Jaworski, S., Prasek, M., Sawosz, E., Chwalibog, A. (2013). Nano-nutrition of chicken embryos. The effect of silver nanoparticles and ATP on expression of chosen genes involvedin myogenesis. Archives of animal nutrition. Vol. 67(5), pp. 347–355. Available at: https://doi.org/10.1080/ 1745039X.2013.830520.
  88. Selim, N.A., Amira, M., Khosht, A.R., El-Hakim, A.A. (2014). Effect of sources and inclusion levels of zinc in broiler diets containing different vegetable oils during summer season conditions on meat quality. International Journal of Poultry Science. Vol. 13(11), pp. 619–626. Available at: https://doi.org/10.3923/ijps.2014.619.626.
  89. Selim, N.A., Radwan, N.L., Youssef, S.F., Eldin, T.S., Elwafa, S.A. (2015). Effect of inclusion inorganic, organic or nano selenium forms in broiler diets on: 2-Physiological, immunological and toxicity statuses of broiler chicks. International Journal of Poultry Science. Vol. 14(3), 144 p. Available at: https://doi.org/10.3923/ijps.2015.144.155.
  90. Senthil Kumaran, C.K., Sugapriya, S., Manivannan, N., Chandar Shekar, B. (2015). Effect on the growth performance of broiler chickens by selenium nanoparticles supplementation. Nano Vision. Vol. 5(4–6), pp. 161–168.
  91. Singh, C., Kumar, J., Kumar, P., Chauhan, B. S., Tiwari, K. N., Mishra, S. K., Singh, J. (2019). Green synthesis of silver nanoparticles using aqueous leaf extract of Premna integrifolia (L.) rich in polyphenols and evaluation of their antioxidant, antibacterial and cytotoxic activity. Biotechnology & Biotechnological Equipment. pp. 1–13. Available at: https://doi.org/10.1080/13102818.2019.1577699
  92. Surai, P.F., Kochish, I.I., Velichko, O.A. (2017). Nano-Se Assimilation and Action in Poultry and Other Monogastric Animals: Is Gut Microbiota an Answer?. Nanoscale research letters. Vol. 12(1), 612 p. Available at: https://doi.org/10.1186/s11671-017-2383-3.
  93. Swain, P.S., Rao, S.B., Rajendran, D., Dominic, G., Selvaraju, S. (2016). Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition. Vol. 2(3), pp. 134–141. Available at: https://doi.org/10.1016/j.aninu.2016.06.003.
  94. Thill, A., Zeyons, O., Spalla, O., Chauvat, F., Rose, J., Auffan, M., Flank, A.M. (2006). Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environmental science & technology. Vol. 40(19), pp. 6151–6156. Available at: https://doi.org/ 10.1021/es060999b.
  95. Tian, L., Zhu, F., Ren, H., Jiang, J., Li, W. (2009). Effects of nano-zinc oxide on antioxidant function in broilers. Chinese Journal of Animal Nutrition. Vol. 21(4), pp. 534–539.
  96. Tsai, Y.H., Mao, S.Y., Li, M.Z., Huang, J.T., Lien, T.F. (2016). Effects of nanosize zinc oxide on zinc retention, eggshell quality, immune response and serum parameters of aged laying hens. Animal feed science and technology. Vol. 213, pp. 99–107. Available at: https://doi.org/10.1016/j.anifeedsci.2016.01.009.
  97. Tsekhmistrenko, O., Tsekhmistrenko, S. (2015). Lipid peroxidation in the quails kidney under Cadmium load and Sel-Plex influence. Tehnologija vyrobnyctva i pererobky produkcii' tvarynnyctva: Zb. nauk. prac' [Technology of production and processing of livestock products: Collection of scientific works]. Vol. 1 (116), pp. 203–207. Available at: http://rep.btsau.edu.ua/handle/BNAU/931.
  98. Tsekhmistrenko, O.S., Tsekhmistrenko, S.I., Bityutskyy, V.S., Melnichenko, O.M., Oleshko, O.A. (2018). Biomimetic and antioxidant activity of nanocrystalline cerium dioxide. World of Medicine and Biology. Vol. 14(63), pp. 196–201. Available at: http://rep.btsau.edu.ua/handle/BNAU/1240.
  99. Tsekhmistrenko, S.I., Bityutskyy, V.S., Tsekhmistrenko, O.S., Polishchuk, V.M., Polishchuk, S.A., Ponomarenko, N.V., Melnychenko, Y.O. Spivak, M.Y. (2018). Enzyme-like activity of nanomaterials. Regulatory Mechanisms in Biosystems. Vol. 9(3), pp. 469–476. Available at: https://doi.org/10.15421/021870.
  100. Tu, W., Wang, H., Li, S., Liu, Q., Sha, H. (2019). The Anti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases. Aging and disease. Vol. 10(3), 637 p. Available at: https://doi.org/10.14336 / AD.2018.0513
  101. Usama, T.M. (2012). Silver nanoparticles in poultry production. Journal of Advanced Veterinary Research. Vol. 2 (4), pp. 303–306.
  102. Vadalasetty, K.P., Lauridsen, C., Engberg, R.M., Vadalasetty, R., Kutwin, M., Chwalibog, A., Sawosz, E. (2018). Influence of silver nanoparticles on growth and health of broiler chickens after infection with Campylobacter jejuni. BMC veterinary research. Vol. 14(1), pp. 1–11. Available at: https://doi.org/10.1186/s12917-017-1323-x.
  103. Wang, C., Wang, M.Q., Ye, S.S., Tao, W.J., Du, Y.J. (2011). Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poultry science. Vol. 90(10), pp. 2223–2228. Available at: https://doi.org/10.3382/ps.2011-01511.
  104. Wang, M.Q., Xu, Z.R. (2003). Effect of supplemental lanthanum on the growth performance of pigs. Asian-Australasian journal of animal sciences. Vol. 16(9), pp. 1360–1363. Available at: https://doi.org/10.5713/ajas.2003.1360.
  105. Wu, J., Zhang, Z. Yan, J. 1994. An initial study on effect of adding rare earth element on productivity of egg laying breeder hens. NingXia Science and Technology of Farming and Forestry. Vol. 4, pp. 36–38. DOI: 10.12720/ jomb.4.3.239-243.
  106.  Xiao, X., Song, D., Cheng, Y., Hu, Y., Wang, F., Lu, Z., Wang, Y. (2019). Biogenic nanoselenium particles activate Nrf2‐ARE pathway by phosphorylating p38, ERK1/2, and AKT on IPEC‐J2 cells. Journal of cellular physiology. Vol. 234(7), pp. 11227–11234. Available at: https://doi.org/10.1002/jcp.27773
  107.  Xu, C., Guo, Y., Qiao, L., Ma, L., Cheng, Y., Roman, A. (2018). Biogenic synthesis of novel functionalized selenium nanoparticles by Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by enterotoxigenic Escherichia coli K88. Frontiers in microbiology. Vol. 9, pp. 1129. Available at: https://doi.org/10.3389 / fmicb.2018.01129
  108.  Xu, Y., Tang, H., Liu, J.H., Wang, H., Liu, Y. (2013). Evaluation of the adjuvant effect of silver nanoparticles both in vitro and in vivo. Toxicology letters. Vol. 219(1), pp. 42–48. Available at: https://doi.org/10.1016/j.toxlet.2013.02.010.
  109.  Zhao, C.Y., Tan, S.X., Xiao, X.Y., Qiu, X.S., Pan, J.Q., Tang, Z.X. (2014). Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biological trace element research. 160(3), pp. 361–367. Available at: https://doi.org/10.1007/s12011-014-0052-2.
  110.  Zhou, X., Wang, Y. (2011). Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poultry Science. Vol. 90(3), pp. 680–686. Available at: https://doi.org/10.3382/ps.2010-00977.
  111.  Zhu, M.T., Feng, W.Y., Wang, Y., Wang, B., Wang, M., Ouyang, H., Zhao, Y.L., Chai, Z.F. (2008). Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicological Sciences. Vol. 107(2), pp. 342–351. Available at: https://doi.org/10.1093/toxsci/kfn245.
AttachmentSize
PDF icon tsekhmistrenko_2_2019.pdf361.77 KB