Ви є тут

Кукурудзяний силос, управління керованими факторами

У цій статті розглядаються ключові фактори виробництва кукурудзяного силосу, які впливають на якість, урожайність, вміст крохмалю та засвоюваність клітковини – елементи, що безпосередньо визначають вартість корму та продуктивність тварин. Зокрема, удосконалення методів управління може збільшити прибуток до 30 доларів на тонні силосу. У Сполучених Штатах Америки щорічно вирощується понад шість мільйонів акрів кукурудзяного силосу, при цьому середня врожайність становить приблизно 20 тонн з акра за вмісту сухої речовини (СР) 30 %. Водночас у провідних регіонах виробництва, таких як Вашингтон, Айдахо та Орегон, врожайність на рівні штату часто досягає 30 тонн з акра і навіть 35–45 тонн за оптимальних умов. Покращення агрономічних заходів також дозволило збільшити густоту рослин із приблизно 24 000 на акр у 1980-х роках до понад 40 000 на акр сьогодні, що сприяє подальшому зростанню врожайності. Дослідження підкреслює, що оброблення зерен є важливим інструментом: у межах одного експерименту використання силосу з обробленим зерном збільшило засвоюваність крохмалю упродовж 24-годин з 73,4 % до 85,8 %. Крім того, регулювання висоти зрізу – від 7 до 20 дюймів – покращило засвоюваність клітковини на 6,7 % і підвищило концентрацію крохмалю на 6 %, хоча кожні 4–6 дюймів збільшення висоти зрізу спричиняли зниження врожайності приблизно на 1 тонну з акра (при 30 % СР). У статті також розглядається вплив вибору гібридів (зокрема, використання генетики бурої середньої жилки [BMR]), ступеня стиглості під час збирання та екологічних факторів на склад силосу. Окрему увагу приділено правильному управлінню збирання і зберігання, підтриманню вологості на рівні 63–68 % під час збирання та досягнення щільності силосу понад 16 фунтів / фут³, що дозволяє мінімізувати втрати сухої речовини під час ферментації та годівлі.

Ключові слова: кукурудзяний силос, інокулянти, перетравність крохмалю, корм, молоч ні штами, молочнокислі бактерії, Enterococcus Faecium, Lactobacillus Plantarum, Lactobacillus Buchneri, перетравність клітковини, зберігання, виробництво силосу

  1. Andrae, J.G., Hunt, C.W., Pritchard, G.T., Harrison, J.H., Kezar, W., Mahanna, W. (2001). Effect of hybrid, maturity, and mechanical processing of corn silage on intake and digestibility by beef cattle. Journal of Animal Science, 79 (9), pp. 2268–2275. DOI:10.2527/2001.7992268x.
  2. Da Silva, T.C., Smith, M.L., Barnard, A.M. (2015). The effect of a chemical additive on the fermentation and aerobic stability of high-moisture corn. Journal of Dairy Science, 98, pp. 8904–8912. DOI:10.3168/jds.2015-9640
  3. Ferraretto, L.F., Fredin, S.M., Shaver, R.D. (2015). Influence of ensiling, exogenous protease addition, and bacterial inoculation on fermenta tion profile, nitrogen fractions, and ruminal in vitro starch digestibility in rehydrated and high-moisture corn. Journal of Dairy Science, 98, pp. 7318–7327. DOI:10.3168/jds.2015-9891
  4. Ferraretto, L.F., Taysom, K., Taysom, D. (2014). Relationships between dry matter content, ensiling, ammonia-nitrogen, and ruminal in vitro starch digestibility in high-moisture corn samples. Journal of Dairy Science, 97, pp. 3221–3227. DOI:10.3168/ jds.2013-7680
  5. Firkins, J.L. (2006). Starch digestibility of corn – silage and grain, in proceedings of the TriState nutrition conference, Ft Wayne, Indiana. pp. 107–117. Available at: (Accessed: 25 April 2006).
  6. Gallo, A., Fancello, F., Ghilardelli, F., Zara, S., Spanghero, M. (2022). Effects of several commercial or pure lactic acid bacteria inoculants on fermen tation and mycotoxin levels in high-moisture corn silage. Animal Feed Science and Technology, 286, 115256 p. DOI:10.1016/j.anifeedsci. 2022.115256.
  7. Guo, X., Guo, W., Yang, M., Sun, Y., Wang, Y., Yan, Y., Zhu, B. (2022). Effect of Bacillus additives on fermentation quality and bacterial community during the ensiling process of whole-plant corn silage. Processes, 10 (5), 978 p. DOI:10.3390/ pr10050978
  8. Heguy, J.M., Meyer, D., Silva-del-Río, N. (2016). A survey of silage management practices on California dairies. Journal of Dairy Science, 99 (3), pp. 1649–1654. DOI:10.3168/jds.2015-10058.
  9. Hoffman, P.C., Esser, N.M., Shaver, R.D. (2011). Influence of ensiling time and inoculation on alteration of the starch-protein matrix in high-moisture corn. Journal of Dairy Science, 94, pp. 2465 2474. DOI:10.3168/jds.2010-3562
  10. Hunt, C.W., Kezar, W., Hinman, D.D. (1993). Effects of hybrid and ensiling with and without a microbial inoculant on the nutritional characteristics of whole-plant corn. Journal of Animal Science, 71, pp. 38–43. DOI:10.2527/1993.71138x
  11. Hunt, C.W., Kezar, W., Vinande, R. (1992). Yield, chemical composition, and ruminal fermentability of corn whole plant, ear, and stover as affected by hybrid. Journal of Production Agriculture, 5 (2), pp. 286–290. DOI:10.2134/jpa1992.0286.
  12. Junges, D., Morais, G., Spoto, M.H.F., Santos, P.S., Adesogan, A.T., Nussio, L.G., Daniel, J.L.P. (2017). Short communication: Influence of various proteolytic sources during fermentation of reconstituted corn grain silages. Journal of Dairy Science, 100, pp. 9048–9051. DOI:10.3168/jds.2017-12943
  13. Kennington, L.R., Hunt, C.W., Szasz, J.I., Grove, A.V., Kezar, W. (2005). Effect of cutting height and genetics on composition, intake, and digestibility of corn silage by beef heifers. Journal of Animal Science, 83 (6), pp. 1445–1454. DOI:10.2527/2005.8361445x
  14. Kung, Jr. L., Schmidt, R.J., Ebling, T.E. (2007). The effect of Lactobacillus buchneri 40788 on the fermentation and aerobic stability of ground and whole high-moisture corn. Journal of Dairy Science, 90, pp. 2309–2314. DOI:10.3168/jds.2006-713.
  15. Lynch, J.P., Baah, J., Beauchemin, K.A. (2015). Conservation, fiber digestibility, and nutritive value of corn harvested at 2 cutting heights and ensiled with fibrolytic enzymes, either alone or with a ferulic acid esterase-producing inoculant. Journal of Dairy Science, 98 (2), pp. 1214–1224. DOI:10.3168/ jds.2014-8768
  16. Mahanna, B. (2019). Starch digestibility analyses on the rise. Available at: (Accessed: 24 April 2019).
  17. Martin, N.P., Russelle, M.P., Powell, J.M., Sniffen, C.W., Smith, S.I., Tricarico, J.M., Grant, R.J. (2017). Invited review: Sustainable forage and crop production for the US dairy industry. Journal of Dairy Science, 100, pp. 9479–9494. DOI:10.3168/jds.2017 13080
  18. Morais, G., Daniel, J.L.P., Kleinshmitt, C. (2017). Additives for grain silages: A review. Slovak Journal of Animal Science, 50, pp. 42–54.
  19. Muck, R.E., Nadeau, E.M.G., McAllister, T.A., Contreras-Govea, F.E., Santos, M.C., Kung, L.Jr. (2018). Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 101, pp. 3980–4000. DOI:10.3168/jds.2017 13839
  20. Naiara, C.S., Nascimento, C.F., Campos, V.M.A., Alves, M.A.P., Resende, F.D., Daniel, J.L.P., Siqueira, G.R. (2019). Influence of storage length and inoculation with Lactobacillus buchneri on the fermentation, aerobic stability, and ruminal degradability of high-moisture corn and rehydrated corn grain silage. Animal Feed Science and Technology, 251, pp. 124–133. DOI:10.1016/j. anifeedsci. 2019.03.003
  21. Ogunade, I.M., Martinez-Tuppia, C., Queiroz, O.C.M., Jiang, Y., Drouin, P., Wu, F., Vyas, D., Adesogan, A.T. (2018). Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation. Journal of Dairy Science, 101 (5), pp. 4034–4059. DOI:10.3168/jds.2017-13788
  22. Powel-Smith, B., Nuzback, L., Mahanna, B., Owens, F. (2015). Starch and NDF digestibility in high producing cows: a field study. Journal of Dairy Science, 98 (Suppl. 2), Abstract T467. Available at: https://shaverlab.dysci.wisc.edu/wp content/uploads/sites/204/2016/05/v3-shaver-penn state-nutrition-conference-2015-starch-by-NDF interactions.pdf
  23. Raffrenato, E., Fievisohn, R., Cotanc, K.W., Grant, R.J., Chase, L.E., Van Amburgh, M.E. (2017). Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. Journal of Dairy Science, 100 (10), pp. 8119–8131. DOI:10.3168/jds.2016-12364
  24. Revello-Chion, A., Borreani, G., Muck, R.E. (2012). Effects of various commercial inoculants on the fermentation, aerobic stability and nutritional quality of rolled and ground high moisture corn, in Proceedings of the XVI International Silage Conference. Hämeenlinna, Finland, 2–4 July. Hämeenlinna: MTT Agrifood Research Finland and University of Helsinki Press, pp. 280–281. Available at: https://hdl.handle.net/2318/123268
  25. Saylor, B.A., Fernandes, T., Sultana, H., Gallo, A., Ferraretto, L.F. (2020). Influence of microbial inoculation and length of storage on fermentation profile, N fractions, and ruminal in situ starch disappearance of whole-plant corn silage. Animal Feed Science and Technology, September. Elsevier. DOI:10.1016/j.anifeedsci.2020.114557
  26. Silva, N.C., Nascimento, C.F., Nascimen- to, F.A., de Resende, F.D., Daniel, J.L.P., Siqueira, G.R. (2018). Fermentation and aerobic stability of rehydrated corn grain silage treated with different doses of Lactobacillus buchneri or a combination of Lactobacillus plantarum and Pediococcus acidilactici. Journal of Dairy Science, 101, pp. 1–10. DOI:10.3168/ jds.2017-13797
  27. Shurcheh, A. (2024). Corn silage management: A review. Animal Science Department, University of Tehran, October. DOI:10.13140/ RG.2.2.35833.28004 (Accessed: 28 October 2024).
  28. Thomas, E., Mahanna, B. (2011). Corn silage: high-chop or traditional cut? Hoard’s Dairyman. Available at: https://hoards.com/article 2943-corn-silage-high-chop-or-traditional-cut.html (Accessed: 10 August 2011).
  29. Van Amburgh, M.E., Raffrenato, E., Ross, D.A. (2018). Development of an in vitro method to determine rumen undigested aNDFom for use in feed evaluation. Journal of Dairy Science, 101 (11), pp. 9888–9900. DOI:10.3168/jds.2018-15101
  30. Weiss, W.P., Wyatt, D.J. (2006). Effect of corn silage hybrid and metabolizable protein supply on nitrogen metabolism of lactating dairy cows. Journal of Dairy Science, 89 (5), pp. 1644–1653. DOI:10.3168/jds.s0022-0302(06)72231-7
  31. Weiss, K., Kroschewski, B., Auerbach, H. (2016). Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. Journal of Dairy Science, 99, pp. 1–17. DOI:10.3168/jds.2015-10323
  32. Wu, Z., Roth, G. (2005). Considerations in managing cut height of corn silage. Extension publication DAS 03–72. Pennsylvania State University, College Park.
  33. Guo, X., Xu, D., Li, F., Bai, J., Su, R. (2023). Current approaches on the roles of lactic acid bacteria in crop silage. Microbial Biotechnology, 16 (1), pp. 67–87. DOI:10.1111/1751-7915.14184
  34. Yin, H., Zhao, M., Pan, G., Zhang, H., Yang, R., Sun, J., Yu, Z., Bai, C., Xue, Y. (2023). Effects of Bacillus subtilis or Lentilactobacillus buchneri on aerobic stability, and the microbial community in aerobic exposure of whole plant corn silage. Frontiers in Microbiology, 14, 1177031 p. DOI:10.3389/ fmicb.2023.1177031
ДолученняРозмір
PDF icon mahanna_1_2025.pdf694.14 КБ