You are here
The Biological methods of selenium nanoparticles synthesis, their characteristics and properties
Nanotechnologies have an impact on every sphere of life, change approaches to environmental recovery, introduce new methods of disease analysis and prevention, treatment, drug delivery and gene therapy, affect the provision of environmentally friendly alternative energy sources, increase crop yields, animal and poultry productivity. Physical, chemical, biological methods of synthesis of nanoparticles, selenium in particular, their properties and the factors participating in reduction of metal ions to nanoparticles are considered. Limitations of nanoparticle synthesis inherent in the biological method (identification and isolation of bioactive fragment responsible for biomineralization of metal ions, analysis of ways to develop individual nanoparticles) and factors contributing to the intensification of nanoparticle production (optimization of pH, temperature, contact time, mixing degree) changes in the total charge of functional organic molecules on the cell wall). It has been proved that these factors affect the size, morphology, composition of nanoparticles and their efficiency during the synthesis. The model of green synthesis with the use of physicochemical means and their biomedical applications have been summarized. There are organisms used for the synthesis of NPs - terrestrial and marine bacteria, bacterial extracellular polymeric substances as bioreductants, fungi, yeast, algae, viruses, microorganisms. It has been demonstrated the biochemical ways of microorganisms in order to fight the toxicity of metals during the synthesis of nanoproducts and the factors that determine the toxicity of metals that are converted into nanoparticles (size, shape, coating agent, nanoparticle density and type of pathogen). The biological role of selenium and features of its influence on an organism in a nanoscale scale are shown. Key words: nanotechnologies, nanoselenium, bacteria, green synthesis, enzymes.
- Abbas, H., Abou Baker, D. (2020). Biological Evaluation of Selenium Nanoparticles biosynthesized by Fusarium semitectum as antimicrobial and anticancer agents. Egyptian Journal of Chemistry. 63(4), pp. 18–19. Available at:https://doi.org/10.21608/ejchem.2019.15618.1945
- Achimovičová, M., Daneu, N., Tóthová, E., Mazaj, M., Dutková, E. (2019). Combined mechanochemical/ thermal annealing approach for the synthesis of Co 9 Se 8 with potential optical properties. Applied Physics A. 125(1), 8 p. Available at:https://doi.org/10.1007/s00339-018-2305-y
- Adelere, I. A., Lateef, A. (2016). A novel approach to the green synthesis of metallic nanoparticles: the use of agrowastes, enzymes, and pigments. Nanotechnology Reviews. 5(6), pp. 567–587. Available at:https://doi.org/10.1515/ ntrev-2016-0024
- Ahmadi, M. H., Ghazvini, M., Alhuyi Nazari, M., Ahmadi, M. A., Pourfayaz, F., Lorenzini, G., Ming, T. (2019). Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research. 43(4), pp. 1387–1410. Available at:https://doi. org/10.1002/er.4282
- Alam, H., Khatoon, N., Raza, M., Ghosh, P. C., Sardar, M. (2019). Synthesis and characterization of nano selenium using plant biomolecules and their potential applications. Bio Nano Science. 9(1), pp. 96–104. Available at:https://doi.org/10.1007/s12668-018-0569-5
- Alemzadeh, E., Dehshahri, A., Dehghanian, A. R., Afsharifar, A., Behjatnia, A. A., Izadpanah, K., Ahmadi, F. (2019). Enhanced anti-tumor efficacy and reduced cardiotoxicity of doxorubicin delivered in a novel plant virus nanoparticle. Colloids and Surfaces B: Biointerfaces. 174, pp. 80–86. Available at:https://doi.org/10.1016/j. colsurfb.2018.11.008
- Ameri, A., Shakibaie, M., Pournamdari, M., Ameri, A., Foroutanfar, A., Doostmohammadi, M., Forootanfar, H. (2020). Degradation of diclofenac sodium using UV/biogenic selenium nanoparticles/H2O2: Optimization of process parameters. Journal of Photochemistry and Photobiology A: Chemistry. Vol. 392. 112382. Available at:https://doi. org/10.1016/j.jphotochem.2020.112382
- Anchana, R. S., Arivarasu, L., Rajeshkumar, S. (2020). Green synthesis of garlic oil-mediated selenium nanoparticles and its antimicrobial and cytotoxic activity. Drug Invention Today. 14(2).
- Banerjee, A., Gupta, P., Nigam, V., Bandopadhyay, R. (2019). Bacterial exopolysaccharides from extreme marine habitat of Southern Ocean: Production and partial characterization. Gayana, 83(2), pp. 126–134. Available at:https://doi.org/10.4067/S0717-65382019000200126
- Bityutskyy, V., Tsekhmistrenko, S., Tsekh-mistrenko, O., Melnychenko, O., Kharchyshyn, V. (2019). Effects of different dietary selenium sources including probiotics mixture on growth performance, feed utilization and serum biochemical profile of quails. In Modern Development Paths of Agricultural Production Springer, Cham. pp. 623–632. Available at:https:// doi.org/10.1007/978-3-030-14918-5_61
- Cardarelli, N. F. (2019). Tin as a vital nutrient: implications in cancer prophylaxis and other physiological processes. CRC press. Available at:https://doi. org/10.1201/9780429280511
- Chandra, H., Kumari, P., Bontempi, E., Yadav, S. (2020). Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology. pp. 1015–1018. Available at:https://doi.org/10.1016/j.bcab.2020.101518
- Cruz, L. Y., Wang, D., Liu, J. (2019). Biosynthesis of selenium nanoparticles, characterization and X-ray induced radiotherapy for the treatment of lung cancer with interstitial lung disease. Journal of Photochemistry and Photobiology B: Biology. 191, pp. 123–127. Available at:https://doi. org/10.1016/j.jphotobiol.2018.12.008
- Daphedar, A., Taranath, T. C. (2018). Green synthesis of zinc nanoparticles using leaf extract of Albizia saman (Jacq.) Merr. and their effect on root meristems of Drimia indica (Roxb.) Jessop. Caryologia. 71(2), pp. 93–102. Available at:https://doi.org/10.1080/00087114.2018.1437980
- Decho, A. W., Gutierrez, T. (2017). Microbial extracellular polymeric substances (EPSs) in ocean systems. Frontiers in microbiology. 8, 922 p. Available at: https://doi. org/10.3389/fmicb.2017.00922
- Elahian, F., Reiisi, S., Shahidi, A., Mirzaei, S.A. (2017). High-throughput bioaccumulation, biotransformation, and production of silver and selenium nanoparticles using genetically engineered Pichia pastoris. Nanomedicine: Nanotechnology, Biology and Medicine. 13(3), pp. 853–861. Available at:https://doi.org/10.1016/j.nano.2016.10.009
- El-Batal, A. I., Mosallam, F. M., Ghorab, M. M., Hanora, A., Gobara, M., Baraka, A., El-Sayyad, G. S. (2019). Factorial design-optimized and gamma irradiationassisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells. International Journal of Biological Macromolecules. Available at:https://doi. org/10.1016/j.ijbiomac.2019.11.210
- Eswayah, A. S., Hondow, N., Scheinost, A. C., Merroun, M., Romero-González, M., Smith, T. J., Gardiner, P. H. (2019). Methyl selenol as a precursor in selenite reduction to Se/S species by methane-oxidizing bacteria. Applied and environmental microbiology. 85(22). Available at:https://doi. org/10.1128/AEM.01379-19
- Fang, J., Zhu, P., Yang, Z., Peng, X., Zuo, Z., Cui, H., Liu, W. (2019). Selenium Ameliorates AFB 1− Induced Excess Apoptosis in Chicken Splenocytes Through Death Receptor and Endoplasmic Reticulum Pathways. Biological trace element research. 187(1), pp. 273–280. Available at:https://doi.org/10.1007/s12011-018-1361-7
- Fardsadegh, B., Jafarizadeh-Malmiri, H. (2019). Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Processing and Synthesis. 8(1), pp. 399–407. Available at:https://doi.org/10.1515/gps-2019-0007
- Fardsadegh, B., Vaghari, H., Mohammad-Jafari, R., Najian, Y., Jafarizadeh-Malmiri, H. (2019). Biosynthesis, characterization and antimicrobial activities assessment of fabricated selenium nanoparticles using Pelargonium zonale leaf extract. Green Processing and Synthesis. 8(1), pp. 191– 198. Available at:https://doi.org/10.1515/gps-2018-0060
- Fedirko, V., Jenab, M., Méplan, C., Jones, J. S., Zhu, W., Schomburg, L., Omichessan, H. (2019). Association of selenoprotein and selenium pathway genotypes with risk of colorectal cancer and interaction with selenium status. Nutrients. 11(4), 935 p. Available at:https://doi.org/10.3390/ nu11040935
- Fenech, M. (2020). The Role of Nutrition in DNA Replication, DNA Damage Prevention and DNA Repair. In Principles of Nutrigenetics and Nutrigenomics. Academic Press. pp. 27–32. Available at:https://doi.org/10.1016/B978- 0-12-804572-5.00004-5
- Fernandes, A.P.N. (2019). Living capacitors: functional characterization of a novel cytochrome acting as a nanowire. Available at: http://hdl.handle.net/10362/91579
- Fischer, S., Krause, T., Lederer, F., Merroun, M. L., Shevchenko, A., Hübner, R., Jain, R. (2020). Bacillus safensis JG-B5T affects the fate of selenium by extracellular production of colloidally less stable selenium nanoparticles. Journal of hazardous materials. 384. 121146. Available at:https://doi.org/10.1016/j.jhazmat.2019.121146
- Gahlawat, G., Choudhury, A. R. (2019). A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC advances. 9(23), pp. 12944–12967. Available at:https://doi.org/10.1039/C8RA10483B
- Gao, X., Li, X., Mu, J., Ho, C. T., Su, J., Zhang, Y., Xie, Y. (2020). Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide. International Journal of Biological Macromolecules. 152, pp. 605–615. Available at:https://doi.org/10.1016/j.ijbiomac.2020.02.199
- Garg, N., Bharti, A., Sharma, A., Saroy, K., Cheema, A., Bisht, A. (2020). Prokaryotic and Eukaryotic Microbes: Potential Tools for Detoxification and Bioavailability of Metalloids. Metalloids in Plants: Advances and Future Prospects. pp. 149–183. Available at:https://doi. org/10.1002/9781119487210.ch9
- Habibi, G., Aleyasin, Y. (2020). Green synthesis of Se nanoparticles and its effect on salt tolerance of barley plants. Int. J. Nano Dimens. 11(2), pp. 145–157.
- Hadrup, N., Loeschner, K., Mandrup, K., RavnHaren, G., Frandsen, H. L., Larsen, E. H., Mortensen, A. (2019). Subacute oral toxicity investigation of selenium nanoparticles and selenite in rats. Drug and chemical toxicology. 42(1), pp. 76–83. Available at:https://doi.org/10 .1080/01480545.2018.1491589
- Hao, N., Li, L., Tang, F. (2017). Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. International Materials Reviews. 62(2), pp. 57–77. Available at:https://doi.org/10.10 80/09506608.2016.1190118
- Hentschel, M., Schäferling, M., Duan, X., Giessen, H., Liu, N. (2017). Chiral plasmonics. Science advances. 3(5), e1602735. Available at:https://doi.org/10.1126/ sciadv.1602735
- Huang, Y., Ren, J., Qu, X. (2019). Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chemical reviews. 119(6), pp. 4357–4412. Available at:https://doi.org/10.1021/acs.chemrev.8b00672
- Iqbal, T., Tehseen, A., Anwar, M., Masooma, S., Bashir, A. (2020). A Short Review on Role of Nanotechnology in Daily Life. Research & Reviews: Journal of Computational Biology. 8(3), pp. 24–33. Available at:http://medicaljournals. stmjournals.in/index.php/RRJoCB/article/view/1833
- Iravani, S., Varma, R. S. (2020). Bacteria in Heavy Metal Remediation and Nanoparticle Biosynthesis. ACS Sustainable Chemistry & Engineering. 8(14), pp. 5395–5409. Available at:https://doi.org/10.1021/acssuschemeng.0c00292
- Kamali, M., Costa, M. E. V., Otero-Irurueta, G., Capela, I. (2019). Ultrasonic irradiation as a green production route for coupling crystallinity and high specific surface area in iron nanomaterials. Journal of cleaner production. 211, pp. 185–197. Available at:https://doi.org/10.1016/j.jclepro.2018.11.127
- Keyhani, A., Ziaali, N., Shakibaie, M., Kareshk, A. T., Shojaee, S., Asadi-Shekaari, M., Mahmoudvand, H. (2020). Biogenic selenium nanoparticles target chronic toxoplasmosis with minimal cytotoxicity in a mouse model. Journal of Medical Microbiology. 69(1), pp. 104–110. Available at:https://doi.org/10.1099/jmm.0.001111
- Kim, H.W., Hong, S. H., &Choi, H. (2020). Effect of Nitrate and Perchlorate on Selenate Reduction in a Sequencing Batch Reactor. Processes. 8(3), 344 p. Available at:https://doi.org/10.3390/pr8030344
- Kim, Y. J., Perumalsamy, H., Markus, J., Balusamy, S. R., Wang, C., Ho Kang, S., Kim, S. H. (2019). Development of Lactobacillus kimchicus DCY51T-mediated gold nanoparticles for delivery of ginsenoside compound K: in vitro photothermal effects and apoptosis detection in cancer cells. Artificial cells, nanomedicine, and biotechnology. 47(1), pp. 30–44. Available at:https://doi.org/10.1080/21691 401.2018.1541900
- Korde, P., Ghotekar, S., Pagar, T., Pansambal, S., Oza, R., Mane, D. (2020). Plant Extract Assisted Ecobenevolent Synthesis of Selenium Nanoparticles-A Review on Plant Parts Involved, Characterization and Their Recent Applications. Journal of Chemical Reviews. pp. 157–168.
- Kurmi, B. D., Patel, P., Paliwal, R., Paliwal, S. R. (2020). Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. Journal of Drug Delivery Science and Technology. 101682. Available at:https://doi.org/10.1016/j. jddst.2020.101682
- Liang, S. X. T., Wong, L. S., Dhanapal, A. C. T. A., Djearamane, S. (2020). Toxicity of Metals and Metallic Nanoparticles on Nutritional Properties of Microalgae. Water, Air, & Soil Pollution. 231(2), 52 p. Available at:https://doi. org/10.1007/s11270-020-4413-5
- Luo, M., Huang, S., Zhang, J., Zhang, L., Mehmood, K., Jiang, J., Zhou, D. (2019). Effect of selenium nanoparticles against abnormal fatty acid metabolism induced by hexavalent chromium in chicken’s liver. Environmental Science and Pollution Research. 26(21), pp. 21828–21834. Available at:https://doi.org/10.1007/s11356-019-05397-3
- Majeed, M. I., Bhatti, H. N., Nawaz, H., Kashif, M. (2019). Nanobiotechnology: Applications of nanomaterials in biological research. Integrating green chemistry and sustainable engineering. pp. 581–615.
- Markwart, B., Liber, K., Xie, Y., Raes, K., Hecker, M., Janz, D., Doig, L. E. (2019). Selenium oxyanion bioconcentration in natural freshwater periphyton. Ecotoxicology and environmental safety. 180, pp. 693–704. Available at:https://doi.org/10.1016/j.ecoenv.2019.05.004
- McClements, J., McClements, D.J. (2016). Standardization of nanoparticle characterization: methods for testing properties, stability, and functionality of edible nanoparticles. Critical reviews in food science and nutrition. 56(8), pp. 1334–1362. Available at:https://doi.org/10.1080/1 0408398.2014.970267
- Mellinas, C., Jiménez, A., Garrigós, M. D. C. (2019). Microwave-Assisted Green Synthesis and Antioxidant Activity of Selenium Nanoparticles Using Theobroma cacao L. Bean Shell Extract. Molecules. 24(22), pp. 40–48. Available at:https://doi.org/10.3390/molecules24224048
- Menon, S., KS, S. D., Agarwal, H., Shanmugam, V. K. (2019). Efficacy of Biogenic Selenium Nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid and Interface Science Communications. 29, pp. 1–8. Available at:https://doi. org/10.1016/j.colcom.2018.12.004
- Mohanta, D., Ahmaruzzaman, M. (2020). Addressing Nanotoxicity: Green Nanotechnology for a Sustainable Future. The ELSI Handbook of Nanotechnology: Risk, Safety, ELSI and Commercialization. pp. 103–112. Available at:https://doi.org/10.1002/9781119592990.ch6
- Mosallam, F. M., El-Sayyad, G. S., Fathy, R. M., El-Batal, A. I. (2018). Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microbial pathogenesis. 122, pp. 108–116. Available at:https://doi.org/10.1016/j.micpath.2018.06.013
- Mukherjee, S., Nethi, S. K. (2019). Biological Synthesis of Nanoparticles Using Bacteria. In Nanotechnology for Agriculture. Springer, Singapore. pp. 37–51.
- Muthu, S., Raju, V., Gopal, V. B., Gunasekaran, A., Narayan, K. S., Malairaj, S., Perumal, P. (2019). A rapid synthesis and antibacterial property of selenium nanoparticles using egg white lysozyme as a stabilizing agent. SN Applied Sciences. 1(12), 1543 p. Available at:https://doi.org/10.1007/ s42452-019-1509-x
- Mykhaylenko, N. F., Zolotareva, E. K. (2017). The effect of copper and selenium nanocarboxylates on biomass accumulation and photosynthetic energy transduction efficiency of the green algae Chlorella vulgaris. Nanoscale research letters. 12(1), 147 p. Available at:https://doi. org/10.1186/s11671-017-1914-2
- Orr, S. E., George, H. S., Barnes, M. C., Mathis, T. N., Joshee, L., Barkin, J., Bridges, C. C. (2019). Coadministration of Selenium with Inorganic Mercury Alters the Disposition of Mercuric Ions in Rats. Biological trace element research. pp. 1–9. Available at:https://doi. org/10.1007/s12011-019-01835-y
- Parsameher, N., Rezaei, S., Khodavasiy, S., Salari, S., Hadizade, S., Kord, M., Mousavi, S. A. A. (2017). Effect of biogenic selenium nanoparticles on ERG11 and CDR1 gene expression in both fluconazole-resistant and-susceptible Candida albicans isolates. Current medical mycology. 3(3), 16 p. Available at:https://doi.org/10.29252/cmm.3.3.16
- Pouri, S., Motamedi, H., Honary, S., Kazeminezhad, I. (2017). Biological synthesis of selenium nanoparticles and evaluation of their bioavailability. Brazilian Archives of Biology and Technology. 60 p. Available at:https://doi. org/10.1590/1678-4324-2017160452
- Preedy, V. R. (2015). Selenium: Chemistry, Analysis, Function and Effects. Royal Society of Chemistry.
- Rahman, Z., Singh, V. P. (2020). Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environmental Science and Pollution Research International. Available at:https://doi. org/10.1007/s11356-020-08903-0
- Rajeshkumar, S., Veena, P., Santhiyaa, R. V. (2018). Synthesis and Characterization of Selenium Nanoparticles Using Natural Resources and Its Applications. In Exploring the Realms of Nature for Nanosynthesis. Springer, Cham. pp. 63– 79. Available at:https://doi.org/10.1007/978-3-319-99570-0_4
- Regulacio, M. D., Yang, D. P., & Ye, E. (2020). Toward greener methods of producing branched metal nanostructures. Cryst Eng Comm. 22(3), pp. 399–411.
- Rehan, M., Alsohim, A. S., El-Fadly, G., Tisa, L. S. (2019). Detoxification and reduction of selenite to elemental red selenium by Frankia. Antonie van Leeuwenhoek. 112(1), pp. 127–139. Available at:https://doi.org/10.1007/ s10482-018-1196-4
- Rentería, V., Franco, A. (2019). Metal Nanoparticles Dispersed in Epoxy Resin: Synthesis, Optical Properties and Applications. In Reviews in Plasmonics 2017. Springer, Cham. pp. 191–228. Available at:https://doi.org/10.1007/978- 3-030-18834-4_8
- Rol N., Tsekhmistrenko S., Tsekhmistrenko O., Polishchuk V., Polishchuk S., Ponomarenko N., Seleznyova O. Lipid Peroxidation In The Body Of Different Species Of Animals And Birds. – 3rd International Conference “Smart Bio”, 02-04 May 2019. Kaunas, Lithuania. 159 p. Available at:http://rep.btsau.edu.ua/handle/BNAU/4665
- Saadi, A., Dalir-Naghadeh, B., Asri-Rezaei, S., Anassori, E. (2020). Platelet Selenium Indices as Useful Diagnostic Surrogate for Assessment of Selenium Status in Lambs: an Experimental Comparative Study on the Efficacy of Sodium Selenite vs. Selenium Nanoparticles. Biological Trace Element Research. 194(2), pp. 401–409. Available at:https://doi.org/10.1007/s12011- 019-01784-6
- Sakamoto, I. K., Maintiguer, S. I., Varesche, M. B. A. (2019). Phylogenetic characterization and quantification by Most Probable Number of the microbial communities of biomass from the Upflow Anaerobic Sludge Blanket Reactor under sulfidogenic conditions. Acta Scientiarum. Technology. 41, 39128 p. Available at:https://doi.org/10.4025/actascitechnol.v41i1.39128
- Salem, S. S., Fouda, A. (2020). Green synthesis of metallic nanoparticles and their prosective biotechnological applications: an overview. Biol Trace Elem Res. Available at:https://doi. org/10.1007/s12011-020-02138-3.
- Samsudin, A. A., Dalia, A. M., Loh, T. C., Sazili, A. Q. (2020). Influence of Bacterial Organic Selenium on Blood Parameters, Immune Response, Selenium Retention and Intestinal Morphology of Broiler Chickens. Available at:https://doi.org/10.21203/rs.2.23476/v1
- Sardar, M., Mazumder, J. A. (2019). Biomolecules assisted synthesis of metal nanoparticles. In Environmental Nanotechnology. Springer, Cham. pp. 1–23. Available at:https://doi.org/10.1007/978-3-319-98708-8_1
- Shang, Y., Hasan, M., Ahammed, G. J., Li, M., Yin, H., Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: a review. Molecules. 24(14), 2558 p. Available at:https://doi.org/10.3390/ molecules24142558
- Shi, L., Duan, Y., Yao, X., Song, R., Ren, Y. (2020). Effects of selenium on the proliferation and apoptosis of sheep spermatogonial stem cells in vitro. Animal Reproduction Science. 106330. Available at:https://doi.org/10.1016/j. anireprosci.2020.106330
- Shoeibi S., Mashreghi M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. Journal of Trace Elements in Medicine and Biology. 2017, 39, pp. 135–139. Available at:https://doi.org/10.1016/j.jtemb.2016.09.003
- Shukla, A. K., Iravani, S. (2018). Green synthesis, characterization and applications of nanoparticles. Elsevier. Available at:https://doi.org/10.1016/C2017-0-02526-0
- Singh, P., Kim, Y. J., Zhang, D., Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in biotechnology. 34(7), pp. 588–599. Available at:https://doi.org/10.1016/j.tibtech.2016.02.006
- Singh, S. K., Kasana, R. C., Yadav, R. S., Pathak, R. (2020). Current Status of Biologically Produced Nanoparticles in Agriculture. In Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. pp. 393–406. Available at:https://doi.org/10.1007/978-981-15-2985-6_21
- Sinharoy, A., Saikia, S., &Pakshirajan, K. (2019). Biological removal of selenite from wastewater and recovery as selenium nanoparticles using inverse fluidized bed bioreactor. Journal of Water Process Engineering. Vol. 32. 100988. Available at:https://doi.org/10.1016/j.jwpe.2019.100988
- Soni, R., Dash, B., Kumar, P., Mishra, U. N., Goel, R. (2019). Microbes for Bioremediation of Heavy Metals. In Microbial Interventions in Agriculture and Environment. Springer, Singapore. pp. 129–141. Available at:https://doi. org/10.1007/978-981-32-9084-6_6
- Tang, S., Wang, T., Jiang, M., Huang, C., Lai, C., Fan, Y., Yong, Q. (2019). Construction of arabinogalactans/ selenium nanoparticles composites for enhancement of the antitumor activity. International journal of biological macromolecules. 128, pp. 444–451. Available at:https://doi. org/10.1016/j.ijbiomac.2019.01.152
- Tendenedzai, J. T., Brink, H. G. (2019). The effect of nitrogen on the reduction of selenite to elemental selenium by Pseudomonas stutzeri NT-I. CHEMICAL ENGINEERING. 74 p. Available at:https://doi.org/10.3303/CET1974089
- Tsekhmistrenko, S.I., Bityutskyy, V.S., Tsekhmistrenko, О.S., Melnichenko, О.М., Kharchyshyn, V.M., Tymoshok, N.O., Ponomarenko, N.V., Polishchuk, S.A., Rol1, N.V., Fedorchenko, M.M., Melnichenko, Yu.О., Merzlova, H.V., Shulko, O.P., Demchenko, A.A. (2020). Effects of selenium compounds and toxicant actionon oxidative biomarkers in quails. Ukrainian Journal of Ecology. 10(2), pp. 232–239. Available at:https://doi. org/10.15421/2020_89
- Tsekhmistrenko, О.S., Bityutsky, V.S., Spyvac, M.Y., Tsekhmistrenko, S.I., Shadura, U.M. (2017). Perspectives of cerium nanoparticles use in agriculture. The Animal Biology. Lviv, Vol. 19, no. 3. pp. 9–18. Available at:http://rep. btsau.edu.ua/handle/BNAU/1300
- Tsekhmistrenko, O., Tsekhmistrenko, S. (2015). Lipid peroxidation in the quails kidney under Cadmium load and Sel-Plex influence. Tehnologija vyrobnyctva i pererobky produkcii'tvarynnyctva: Zb. nauk. prac'[Technology of production and processing of livestock products: Collection of scientific works]. Vol. 1 (116), Bila Tserkva. pp. 203–207. Available at:http://rep.btsau.edu.ua/handle/BNAU/931
- Tsekhmistrenko, S. I., Bityutskyy, V. S., Tsekhmistrenko, O. S., Horalskyi, L. P., Tymoshok, N. O., Spivak, M. Y. (2020). Bacterial synthesis of nanoparticles: A green approach. Biosystems Diversity. 28(1), pp. 9–17. Available at:https://doi.org/10.15421/012002
- Tsekhmistrenko, S., Bityutskii, V., Tsekhmistrenko, O. (2020). Markers of oxidative stress in the blood of quails under the influence of selenium nanoparticles. Available at:http://rep.btsau.edu.ua/handle/BNAU/4763
- Tsekhmistrenko, S.I., Bityutskyy, V.S., Tsekhmistrenko, O.S., Polishchuk, V.M., Polishchuk, S.A., Ponomarenko, N.V., Melnychenko, Y.O., Spivak, M.Y. (2018). Enzyme-likeactivity of nanomaterials. Regulatory Mechanisms in Biosystems. 9(3). pp. 469–476. Available at:https://doi. org/10.15421/021870
- Tymoshok, N. O., Kharchuk, M. S., Kaplunenko, V. G., Bityutskyy, V. S., Tsekhmistrenko, S. I., Tsekhmistrenko, O. S., Spivak, M. Y., Melnichenko О. М. (2019). Evaluation of effects of selenium nanoparticles on Bacillus subtilis. Regulatory Mechanisms in Biosystems. 10(4), pp. 544–552. Available at:https://doi.org/10.15421/021980
- Vaishnavi, S., Thamaraiselvi, C., Vasanthy, M. (2019). Efficiency of Indigenous Microorganisms in Bioremediation of Tannery Effluent. In Waste Water Recycling and Management. Springer, Singapore. pp. 151–168. Available at:https://doi.org/10.1007/978-981-13-2619-6_13
- Vaseghi, Z., Nematollahzadeh, A., Tavakoli, O. (2018). Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: a review. Reviews in Chemical Engineering. 34(4), pp. 529–559. Available at:https://doi.org/10.1515/revce-2017-0005
- Wadhwani, S. A., Shedbalkar, U. U., Singh, R., Chopade, B. A. (2016). Biogenic selenium nanoparticles: current status and future prospects. Applied microbiology and biotechnology. 100(6), pp. 2555–2566. Available at:https:// doi.org/10.1007/s00253-016-7300-7
- Waghmare, S. R., Mulla, M. N., Marathe, S. R., Sonawane, K. D. (2015). Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech. 5(1), pp. 33–38. Available at:https://doi.org/10.1007/s13205- 014-0196-y
- Xu, X., Cheng, W., Liu, X., You, H., Wu, G., Ding, K., Gu, H. (2019). Selenate reduction and selenium enrichment of tea by the endophytic Herbaspirillum sp. strain WT00C. Current microbiology. pp. 1–14. Available at:https:// doi.org/10.1007/s00284-019-01682-z
- Yin, H., Qi, Z., Li, M., Ahammed, G. J., Chu, X., Zhou, J. (2019). Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. Ecotoxicology and environmental safety. 169, pp. 911–917. Available at:https://doi.org/10.1016/j.ecoenv.2018.11.080
- Yu, Q., Boyanov, M. I., Liu, J., Kemner, K. M., Fein, J. B. (2018). Adsorption of selenite onto Bacillus subtilis: the overlooked role of cell envelope sulfhydryl sites in the microbial conversion of Se (IV). Environmental science & technology. 52(18), pp. 10400–10407. Available at:https:// doi.org/10.1021/acs.est.8b02280
- Yumei, L., Yamei, L., Qiang, L., Jie, B. (2017). Rapid biosynthesis of silver nanoparticles based on flocculation and reduction of an exopolysaccharide from arthrobacter sp. B4: its antimicrobial activity and phytotoxicity. Journal of Nanomaterials. Available at:https://doi. org/10.1155/2017/9703614
- Zhang, J., Wang, Y., Shao, Z., Li, J., Zan, S., Zhou, S., Yang, R. (2019). Two selenium tolerant Lysinibacillus sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions. Journal of Environmental Sciences. 77, pp. 238–249. Available at:https://doi. org/10.1016/j.jes.2018.08.002
- Zhao, P., Li, M., Chen, Y., He, C., Zhang, X., Fan, T., Luo, J. (2019). Selenium-doped calcium carbonate nanoparticles loaded with cisplatin enhance efficiency and reduce side effects. International journal of pharmaceutics. 570 p. 118638. Available at:https://doi.org/10.1016/j.ijpharm.2019.118638
- Tsekhmistrenko, O.S., Bityutsʹkyy, V.S., Tsekhmistrenko, S.I., Melʹnychenko, O.M., Tymoshok, N.O., Spivak, M.Ya. (2019). Vykorystannya nanochastynok metaliv ta nemetaliv u ptakhivnytstvi [Use of metal and non-metal nanoparticles in poultry farming]. Tekhnolohiya vyrobnytstva I pererobky produktsiyi tvarynnytstva, № 2, 2019 [Technology of production and processing of livestock products, no. 2, 2019]. Bila Tserkva, pp. 113–130. Available at:http:// rep.btsau.edu.ua/handle/BNAU/3838
- Tsekhmistrenko, O.S., Tsekhmistrenko, S.I., Devecha, I.O., Ponomarenko, N.V., Polishchuk, V.M., Yaremchuk, T.S. (2013). Vplyv Sel-pleksu ta kadmijevogo navantazhennja na lipoperoksydaciju [Influence of Sel-plex and cadmium load on lipoperoxidation]. Zbirnyk naukovyh prac' [Collection of scientific works]. Tehnologija vyrobnyctva i pererobky produkcii' tvarynnyctva [Technology of production and processing of livestock products]. Issue 9 (103), pp. 16–19. Available at:http://rep.btsau.edu.ua/handle/BNAU/957
- Tsekhmistrenko, O.S., Bityutsʹkyy, V.S., Tsekhmistrenko, S.I. (2020). “Zeleni” tekhnolohiyi u syntezi nanochastynok selenu ["Green" technologies in the synthesis of selenium nanoparticles]. Shlyakhy rozvytku nauky v suchasnykh kryzovykh umovakh: tezy dop I mizhnarodnoyi naukovo-praktychnoyi internet-konferentsiyi, 28-29 travnya 2020 roku [Ways of development of science in modern crisis conditions: theses add. I International Scientific and Practical Internet Conference. May 28-29, 2020]. Dnipro, Vol. 2, pp. 506–509. Available at:http://193.138.93.8/bitstream/ BNAU/4823/1/Zeleni_tekhnolohii.pdf
- Tsekhmistrenko, O.S., Tsekhmistrenko, S.I., Bityutsʹkyy, V.S., Melʹnychenko, O.M., Oleshko, O.A. Biomimetychna ta antyoksydantna aktyvnist' nanospoluk dioksydu ceriju [Biomimetic and antioxidant activity of cerium dioxide nanocompounds]. Svit medycyny ta biologii', 2018, № 1 (63) [World of Medicine and Biology, 2018, № 1 (63)]. Poltava, 2018. pp. 196–201. Available at:https://doi.org/10.267254 / 2079-8334-2018-1-63-196-201
Attachment | Size |
---|---|
tsehmistrenko_2_2020.pdf | 752.45 KB |