You are here

The Biological methods of selenium nanoparticles synthesis, their characteristics and properties

Nanotechnologies have an impact on every sphere of life, change approaches to environmental recovery, introduce new methods of disease analysis and prevention, treatment, drug delivery and gene therapy, affect the provision of environmentally friendly alternative energy sources, increase crop yields, animal and poultry productivity. Physical, chemical, biological methods of synthesis of nanoparticles, selenium in particular, their properties and the factors participating in reduction of metal ions to nanoparticles are considered. Limitations of nanoparticle synthesis inherent in the biological method (identification and isolation of bioactive fragment responsible for biomineralization of metal ions, analysis of ways to develop individual nanoparticles) and factors contributing to the intensification of nanoparticle production (optimization of pH, temperature, contact time, mixing degree) changes in the total charge of functional organic molecules on the cell wall). It has been proved that these factors affect the size, morphology, composition of nanoparticles and their efficiency during the synthesis. The model of green synthesis with the use of physicochemical means and their biomedical applications have been summarized. There are organisms used for the synthesis of NPs - terrestrial and marine bacteria, bacterial extracellular polymeric substances as bioreductants, fungi, yeast, algae, viruses, microorganisms. It has been demonstrated the biochemical ways of microorganisms in order to fight the toxicity of metals during the synthesis of nanoproducts and the factors that determine the toxicity of metals that are converted into nanoparticles (size, shape, coating agent, nanoparticle density and type of pathogen). The biological role of selenium and features of its influence on an organism in a nanoscale scale are shown. Key words: nanotechnologies, nanoselenium, bacteria, green synthesis, enzymes. 

  1. Abbas, H., Abou Baker, D. (2020). Biological Evaluation of Selenium Nanoparticles biosynthesized by Fusarium semitectum as antimicrobial and anticancer agents. Egyptian Journal of Chemistry. 63(4), pp. 18–19. Available at:https://doi.org/10.21608/ejchem.2019.15618.1945
  2. Achimovičová, M., Daneu, N., Tóthová, E., Mazaj, M., Dutková, E. (2019). Combined mechanochemical/ thermal annealing approach for the synthesis of Co 9 Se 8 with potential optical properties. Applied Physics A. 125(1), 8 p. Available at:https://doi.org/10.1007/s00339-018-2305-y
  3. Adelere, I. A., Lateef, A. (2016). A novel approach to the green synthesis of metallic nanoparticles: the use of agrowastes, enzymes, and pigments. Nanotechnology Reviews. 5(6), pp. 567–587. Available at:https://doi.org/10.1515/ ntrev-2016-0024
  4. Ahmadi, M. H., Ghazvini, M., Alhuyi Nazari, M., Ahmadi, M. A., Pourfayaz, F., Lorenzini, G., Ming, T. (2019). Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research. 43(4), pp. 1387–1410. Available at:https://doi. org/10.1002/er.4282
  5. Alam, H., Khatoon, N., Raza, M., Ghosh, P. C., Sardar, M. (2019). Synthesis and characterization of nano selenium using plant biomolecules and their potential applications. Bio Nano Science. 9(1), pp. 96–104. Available at:https://doi.org/10.1007/s12668-018-0569-5
  6. Alemzadeh, E., Dehshahri, A., Dehghanian, A. R., Afsharifar, A., Behjatnia, A. A., Izadpanah, K., Ahmadi, F. (2019). Enhanced anti-tumor efficacy and reduced cardiotoxicity of doxorubicin delivered in a novel plant virus nanoparticle. Colloids and Surfaces B: Biointerfaces. 174, pp. 80–86. Available at:https://doi.org/10.1016/j. colsurfb.2018.11.008
  7. Ameri, A., Shakibaie, M., Pournamdari, M., Ameri, A., Foroutanfar, A., Doostmohammadi, M., Forootanfar, H. (2020). Degradation of diclofenac sodium using UV/biogenic selenium nanoparticles/H2O2: Optimization of process parameters. Journal of Photochemistry and Photobiology A: Chemistry. Vol. 392. 112382. Available at:https://doi. org/10.1016/j.jphotochem.2020.112382
  8. Anchana, R. S., Arivarasu, L., Rajeshkumar, S. (2020). Green synthesis of garlic oil-mediated selenium nanoparticles and its antimicrobial and cytotoxic activity. Drug Invention Today. 14(2).
  9. Banerjee, A., Gupta, P., Nigam, V., Bandopadhyay, R. (2019). Bacterial exopolysaccharides from extreme marine habitat of Southern Ocean: Production and partial characterization. Gayana, 83(2), pp. 126–134. Available at:https://doi.org/10.4067/S0717-65382019000200126
  10. Bityutskyy, V., Tsekhmistrenko, S., Tsekh-mistrenko, O., Melnychenko, O., Kharchyshyn, V. (2019). Effects of different dietary selenium sources including probiotics mixture on growth performance, feed utilization and serum biochemical profile of quails. In Modern Development Paths of Agricultural Production Springer, Cham. pp. 623–632. Available at:https:// doi.org/10.1007/978-3-030-14918-5_61
  11. Cardarelli, N. F. (2019). Tin as a vital nutrient: implications in cancer prophylaxis and other physiological processes. CRC press. Available at:https://doi. org/10.1201/9780429280511
  12. Chandra, H., Kumari, P., Bontempi, E., Yadav, S. (2020). Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology. pp. 1015–1018. Available at:https://doi.org/10.1016/j.bcab.2020.101518
  13. Cruz, L. Y., Wang, D., Liu, J. (2019). Biosynthesis of selenium nanoparticles, characterization and X-ray induced radiotherapy for the treatment of lung cancer with interstitial lung disease. Journal of Photochemistry and Photobiology B: Biology. 191, pp. 123–127. Available at:https://doi. org/10.1016/j.jphotobiol.2018.12.008
  14. Daphedar, A., Taranath, T. C. (2018). Green synthesis of zinc nanoparticles using leaf extract of Albizia saman (Jacq.) Merr. and their effect on root meristems of Drimia indica (Roxb.) Jessop. Caryologia. 71(2), pp. 93–102. Available at:https://doi.org/10.1080/00087114.2018.1437980
  15. Decho, A. W., Gutierrez, T. (2017). Microbial extracellular polymeric substances (EPSs) in ocean systems. Frontiers in microbiology. 8, 922 p. Available at: https://doi. org/10.3389/fmicb.2017.00922
  16. Elahian, F., Reiisi, S., Shahidi, A., Mirzaei, S.A. (2017). High-throughput bioaccumulation, biotransformation, and production of silver and selenium nanoparticles using genetically engineered Pichia pastoris. Nanomedicine: Nanotechnology, Biology and Medicine. 13(3), pp. 853–861. Available at:https://doi.org/10.1016/j.nano.2016.10.009
  17. El-Batal, A. I., Mosallam, F. M., Ghorab, M. M., Hanora, A., Gobara, M., Baraka, A., El-Sayyad, G. S. (2019). Factorial design-optimized and gamma irradiationassisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells. International Journal of Biological Macromolecules. Available at:https://doi. org/10.1016/j.ijbiomac.2019.11.210
  18. Eswayah, A. S., Hondow, N., Scheinost, A. C., Merroun, M., Romero-González, M., Smith, T. J., Gardiner, P. H. (2019). Methyl selenol as a precursor in selenite reduction to Se/S species by methane-oxidizing bacteria. Applied and environmental microbiology. 85(22). Available at:https://doi. org/10.1128/AEM.01379-19
  19. Fang, J., Zhu, P., Yang, Z., Peng, X., Zuo, Z., Cui, H., Liu, W. (2019). Selenium Ameliorates AFB 1− Induced Excess Apoptosis in Chicken Splenocytes Through Death Receptor and Endoplasmic Reticulum Pathways. Biological trace element research. 187(1), pp. 273–280. Available at:https://doi.org/10.1007/s12011-018-1361-7
  20. Fardsadegh, B., Jafarizadeh-Malmiri, H. (2019). Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Processing and Synthesis. 8(1), pp. 399–407. Available at:https://doi.org/10.1515/gps-2019-0007
  21. Fardsadegh, B., Vaghari, H., Mohammad-Jafari, R., Najian, Y., Jafarizadeh-Malmiri, H. (2019). Biosynthesis, characterization and antimicrobial activities assessment of fabricated selenium nanoparticles using Pelargonium zonale leaf extract. Green Processing and Synthesis. 8(1), pp. 191– 198. Available at:https://doi.org/10.1515/gps-2018-0060
  22. Fedirko, V., Jenab, M., Méplan, C., Jones, J. S., Zhu, W., Schomburg, L., Omichessan, H. (2019). Association of selenoprotein and selenium pathway genotypes with risk of colorectal cancer and interaction with selenium status. Nutrients. 11(4), 935 p. Available at:https://doi.org/10.3390/ nu11040935
  23. Fenech, M. (2020). The Role of Nutrition in DNA Replication, DNA Damage Prevention and DNA Repair. In Principles of Nutrigenetics and Nutrigenomics. Academic Press. pp. 27–32. Available at:https://doi.org/10.1016/B978- 0-12-804572-5.00004-5
  24. Fernandes, A.P.N. (2019). Living capacitors: functional characterization of a novel cytochrome acting as a nanowire. Available at: http://hdl.handle.net/10362/91579
  25. Fischer, S., Krause, T., Lederer, F., Merroun, M. L., Shevchenko, A., Hübner, R., Jain, R. (2020). Bacillus safensis JG-B5T affects the fate of selenium by extracellular production of colloidally less stable selenium nanoparticles. Journal of hazardous materials. 384. 121146. Available at:https://doi.org/10.1016/j.jhazmat.2019.121146
  26. Gahlawat, G., Choudhury, A. R. (2019). A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC advances. 9(23), pp. 12944–12967. Available at:https://doi.org/10.1039/C8RA10483B
  27. Gao, X., Li, X., Mu, J., Ho, C. T., Su, J., Zhang, Y., Xie, Y. (2020). Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide. International Journal of Biological Macromolecules. 152, pp. 605–615. Available at:https://doi.org/10.1016/j.ijbiomac.2020.02.199
  28. Garg, N., Bharti, A., Sharma, A., Saroy, K., Cheema, A., Bisht, A. (2020). Prokaryotic and Eukaryotic Microbes: Potential Tools for Detoxification and Bioavailability of Metalloids. Metalloids in Plants: Advances and Future Prospects. pp. 149–183. Available at:https://doi. org/10.1002/9781119487210.ch9
  29. Habibi, G., Aleyasin, Y. (2020). Green synthesis of Se nanoparticles and its effect on salt tolerance of barley plants. Int. J. Nano Dimens. 11(2), pp. 145–157.
  30. Hadrup, N., Loeschner, K., Mandrup, K., RavnHaren, G., Frandsen, H. L., Larsen, E. H., Mortensen, A. (2019). Subacute oral toxicity investigation of selenium nanoparticles and selenite in rats. Drug and chemical toxicology. 42(1), pp. 76–83. Available at:https://doi.org/10 .1080/01480545.2018.1491589
  31. Hao, N., Li, L., Tang, F. (2017). Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. International Materials Reviews. 62(2), pp. 57–77. Available at:https://doi.org/10.10 80/09506608.2016.1190118
  32. Hentschel, M., Schäferling, M., Duan, X., Giessen, H., Liu, N. (2017). Chiral plasmonics. Science advances. 3(5), e1602735. Available at:https://doi.org/10.1126/ sciadv.1602735
  33. Huang, Y., Ren, J., Qu, X. (2019). Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chemical reviews. 119(6), pp. 4357–4412. Available at:https://doi.org/10.1021/acs.chemrev.8b00672
  34. Iqbal, T., Tehseen, A., Anwar, M., Masooma, S., Bashir, A. (2020). A Short Review on Role of Nanotechnology in Daily Life. Research & Reviews: Journal of Computational Biology. 8(3), pp. 24–33. Available at:http://medicaljournals. stmjournals.in/index.php/RRJoCB/article/view/1833
  35. Iravani, S., Varma, R. S. (2020). Bacteria in Heavy Metal Remediation and Nanoparticle Biosynthesis. ACS Sustainable Chemistry & Engineering. 8(14), pp. 5395–5409. Available at:https://doi.org/10.1021/acssuschemeng.0c00292
  36. Kamali, M., Costa, M. E. V., Otero-Irurueta, G., Capela, I. (2019). Ultrasonic irradiation as a green production route for coupling crystallinity and high specific surface area in iron nanomaterials. Journal of cleaner production. 211, pp. 185–197. Available at:https://doi.org/10.1016/j.jclepro.2018.11.127
  37. Keyhani, A., Ziaali, N., Shakibaie, M., Kareshk, A. T., Shojaee, S., Asadi-Shekaari, M., Mahmoudvand, H. (2020). Biogenic selenium nanoparticles target chronic toxoplasmosis with minimal cytotoxicity in a mouse model. Journal of Medical Microbiology. 69(1), pp. 104–110. Available at:https://doi.org/10.1099/jmm.0.001111
  38. Kim, H.W., Hong, S. H., &Choi, H. (2020). Effect of Nitrate and Perchlorate on Selenate Reduction in a Sequencing Batch Reactor. Processes. 8(3), 344 p. Available at:https://doi.org/10.3390/pr8030344
  39. Kim, Y. J., Perumalsamy, H., Markus, J., Balusamy, S. R., Wang, C., Ho Kang, S., Kim, S. H. (2019). Development of Lactobacillus kimchicus DCY51T-mediated gold nanoparticles for delivery of ginsenoside compound K: in vitro photothermal effects and apoptosis detection in cancer cells. Artificial cells, nanomedicine, and biotechnology. 47(1), pp. 30–44. Available at:https://doi.org/10.1080/21691 401.2018.1541900
  40. Korde, P., Ghotekar, S., Pagar, T., Pansambal, S., Oza, R., Mane, D. (2020). Plant Extract Assisted Ecobenevolent Synthesis of Selenium Nanoparticles-A Review on Plant Parts Involved, Characterization and Their Recent Applications. Journal of Chemical Reviews. pp. 157–168.
  41. Kurmi, B. D., Patel, P., Paliwal, R., Paliwal, S. R. (2020). Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. Journal of Drug Delivery Science and Technology. 101682. Available at:https://doi.org/10.1016/j. jddst.2020.101682
  42. Liang, S. X. T., Wong, L. S., Dhanapal, A. C. T. A., Djearamane, S. (2020). Toxicity of Metals and Metallic Nanoparticles on Nutritional Properties of Microalgae. Water, Air, & Soil Pollution. 231(2), 52 p. Available at:https://doi. org/10.1007/s11270-020-4413-5
  43. Luo, M., Huang, S., Zhang, J., Zhang, L., Mehmood, K., Jiang, J., Zhou, D. (2019). Effect of selenium nanoparticles against abnormal fatty acid metabolism induced by hexavalent chromium in chicken’s liver. Environmental Science and Pollution Research. 26(21), pp. 21828–21834. Available at:https://doi.org/10.1007/s11356-019-05397-3
  44. Majeed, M. I., Bhatti, H. N., Nawaz, H., Kashif, M. (2019). Nanobiotechnology: Applications of nanomaterials in biological research. Integrating green chemistry and sustainable engineering. pp. 581–615.
  45. Markwart, B., Liber, K., Xie, Y., Raes, K., Hecker, M., Janz, D., Doig, L. E. (2019). Selenium oxyanion bioconcentration in natural freshwater periphyton. Ecotoxicology and environmental safety. 180, pp. 693–704. Available at:https://doi.org/10.1016/j.ecoenv.2019.05.004
  46. McClements, J., McClements, D.J. (2016). Standardization of nanoparticle characterization: methods for testing properties, stability, and functionality of edible nanoparticles. Critical reviews in food science and nutrition. 56(8), pp. 1334–1362. Available at:https://doi.org/10.1080/1 0408398.2014.970267
  47. Mellinas, C., Jiménez, A., Garrigós, M. D. C. (2019). Microwave-Assisted Green Synthesis and Antioxidant Activity of Selenium Nanoparticles Using Theobroma cacao L. Bean Shell Extract. Molecules. 24(22), pp. 40–48. Available at:https://doi.org/10.3390/molecules24224048
  48. Menon, S., KS, S. D., Agarwal, H., Shanmugam, V. K. (2019). Efficacy of Biogenic Selenium Nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid and Interface Science Communications. 29, pp. 1–8. Available at:https://doi. org/10.1016/j.colcom.2018.12.004
  49. Mohanta, D., Ahmaruzzaman, M. (2020). Addressing Nanotoxicity: Green Nanotechnology for a Sustainable Future. The ELSI Handbook of Nanotechnology: Risk, Safety, ELSI and Commercialization. pp. 103–112. Available at:https://doi.org/10.1002/9781119592990.ch6
  50. Mosallam, F. M., El-Sayyad, G. S., Fathy, R. M., El-Batal, A. I. (2018). Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microbial pathogenesis. 122, pp. 108–116. Available at:https://doi.org/10.1016/j.micpath.2018.06.013
  51. Mukherjee, S., Nethi, S. K. (2019). Biological Synthesis of Nanoparticles Using Bacteria. In Nanotechnology for Agriculture. Springer, Singapore. pp. 37–51.
  52. Muthu, S., Raju, V., Gopal, V. B., Gunasekaran, A., Narayan, K. S., Malairaj, S., Perumal, P. (2019). A rapid synthesis and antibacterial property of selenium nanoparticles using egg white lysozyme as a stabilizing agent. SN Applied Sciences. 1(12), 1543 p. Available at:https://doi.org/10.1007/ s42452-019-1509-x
  53. Mykhaylenko, N. F., Zolotareva, E. K. (2017). The effect of copper and selenium nanocarboxylates on biomass accumulation and photosynthetic energy transduction efficiency of the green algae Chlorella vulgaris. Nanoscale research letters. 12(1), 147 p. Available at:https://doi. org/10.1186/s11671-017-1914-2
  54. Orr, S. E., George, H. S., Barnes, M. C., Mathis, T. N., Joshee, L., Barkin, J., Bridges, C. C. (2019). Coadministration of Selenium with Inorganic Mercury Alters the Disposition of Mercuric Ions in Rats. Biological trace element research. pp. 1–9. Available at:https://doi. org/10.1007/s12011-019-01835-y
  55. Parsameher, N., Rezaei, S., Khodavasiy, S., Salari, S., Hadizade, S., Kord, M., Mousavi, S. A. A. (2017). Effect of biogenic selenium nanoparticles on ERG11 and CDR1 gene expression in both fluconazole-resistant and-susceptible Candida albicans isolates. Current medical mycology. 3(3), 16 p. Available at:https://doi.org/10.29252/cmm.3.3.16
  56. Pouri, S., Motamedi, H., Honary, S., Kazeminezhad, I. (2017). Biological synthesis of selenium nanoparticles and evaluation of their bioavailability. Brazilian Archives of Biology and Technology. 60 p. Available at:https://doi. org/10.1590/1678-4324-2017160452
  57. Preedy, V. R. (2015). Selenium: Chemistry, Analysis, Function and Effects. Royal Society of Chemistry.
  58. Rahman, Z., Singh, V. P. (2020). Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environmental Science and Pollution Research International. Available at:https://doi. org/10.1007/s11356-020-08903-0
  59. Rajeshkumar, S., Veena, P., Santhiyaa, R. V. (2018). Synthesis and Characterization of Selenium Nanoparticles Using Natural Resources and Its Applications. In Exploring the Realms of Nature for Nanosynthesis. Springer, Cham. pp. 63– 79. Available at:https://doi.org/10.1007/978-3-319-99570-0_4
  60. Regulacio, M. D., Yang, D. P., & Ye, E. (2020). Toward greener methods of producing branched metal nanostructures. Cryst Eng Comm. 22(3), pp. 399–411.
  61. Rehan, M., Alsohim, A. S., El-Fadly, G., Tisa, L. S. (2019). Detoxification and reduction of selenite to elemental red selenium by Frankia. Antonie van Leeuwenhoek. 112(1), pp. 127–139. Available at:https://doi.org/10.1007/ s10482-018-1196-4
  62. Rentería, V., Franco, A. (2019). Metal Nanoparticles Dispersed in Epoxy Resin: Synthesis, Optical Properties and Applications. In Reviews in Plasmonics 2017. Springer, Cham. pp. 191–228. Available at:https://doi.org/10.1007/978- 3-030-18834-4_8
  63. Rol N., Tsekhmistrenko S., Tsekhmistrenko O., Polishchuk V., Polishchuk S., Ponomarenko N., Seleznyova O. Lipid Peroxidation In The Body Of Different Species Of Animals And Birds. – 3rd International Conference “Smart Bio”, 02-04 May 2019. Kaunas, Lithuania. 159 p. Available at:http://rep.btsau.edu.ua/handle/BNAU/4665
  64. Saadi, A., Dalir-Naghadeh, B., Asri-Rezaei, S., Anassori, E. (2020). Platelet Selenium Indices as Useful Diagnostic Surrogate for Assessment of Selenium Status in Lambs: an Experimental Comparative Study on the Efficacy of Sodium Selenite vs. Selenium Nanoparticles. Biological Trace Element Research. 194(2), pp. 401–409. Available at:https://doi.org/10.1007/s12011- 019-01784-6
  65. Sakamoto, I. K., Maintiguer, S. I., Varesche, M. B. A. (2019). Phylogenetic characterization and quantification by Most Probable Number of the microbial communities of biomass from the Upflow Anaerobic Sludge Blanket Reactor under sulfidogenic conditions. Acta Scientiarum. Technology. 41, 39128 p. Available at:https://doi.org/10.4025/actascitechnol.v41i1.39128
  66. Salem, S. S., Fouda, A. (2020). Green synthesis of metallic nanoparticles and their prosective biotechnological applications: an overview. Biol Trace Elem Res. Available at:https://doi. org/10.1007/s12011-020-02138-3.
  67. Samsudin, A. A., Dalia, A. M., Loh, T. C., Sazili, A. Q. (2020). Influence of Bacterial Organic Selenium on Blood Parameters, Immune Response, Selenium Retention and Intestinal Morphology of Broiler Chickens. Available at:https://doi.org/10.21203/rs.2.23476/v1
  68. Sardar, M., Mazumder, J. A. (2019). Biomolecules assisted synthesis of metal nanoparticles. In Environmental Nanotechnology. Springer, Cham. pp. 1–23. Available at:https://doi.org/10.1007/978-3-319-98708-8_1
  69. Shang, Y., Hasan, M., Ahammed, G. J., Li, M., Yin, H., Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: a review. Molecules. 24(14), 2558 p. Available at:https://doi.org/10.3390/ molecules24142558
  70. Shi, L., Duan, Y., Yao, X., Song, R., Ren, Y. (2020). Effects of selenium on the proliferation and apoptosis of sheep spermatogonial stem cells in vitro. Animal Reproduction Science. 106330. Available at:https://doi.org/10.1016/j. anireprosci.2020.106330
  71. Shoeibi S., Mashreghi M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. Journal of Trace Elements in Medicine and Biology. 2017, 39, pp. 135–139. Available at:https://doi.org/10.1016/j.jtemb.2016.09.003
  72. Shukla, A. K., Iravani, S. (2018). Green synthesis, characterization and applications of nanoparticles. Elsevier. Available at:https://doi.org/10.1016/C2017-0-02526-0
  73. Singh, P., Kim, Y. J., Zhang, D., Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in biotechnology. 34(7), pp. 588–599. Available at:https://doi.org/10.1016/j.tibtech.2016.02.006
  74. Singh, S. K., Kasana, R. C., Yadav, R. S., Pathak, R. (2020). Current Status of Biologically Produced Nanoparticles in Agriculture. In Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. pp. 393–406. Available at:https://doi.org/10.1007/978-981-15-2985-6_21
  75. Sinharoy, A., Saikia, S., &Pakshirajan, K. (2019). Biological removal of selenite from wastewater and recovery as selenium nanoparticles using inverse fluidized bed bioreactor. Journal of Water Process Engineering. Vol. 32. 100988. Available at:https://doi.org/10.1016/j.jwpe.2019.100988
  76. Soni, R., Dash, B., Kumar, P., Mishra, U. N., Goel, R. (2019). Microbes for Bioremediation of Heavy Metals. In Microbial Interventions in Agriculture and Environment. Springer, Singapore. pp. 129–141. Available at:https://doi. org/10.1007/978-981-32-9084-6_6
  77. Tang, S., Wang, T., Jiang, M., Huang, C., Lai, C., Fan, Y., Yong, Q. (2019). Construction of arabinogalactans/ selenium nanoparticles composites for enhancement of the antitumor activity. International journal of biological macromolecules. 128, pp. 444–451. Available at:https://doi. org/10.1016/j.ijbiomac.2019.01.152
  78. Tendenedzai, J. T., Brink, H. G. (2019). The effect of nitrogen on the reduction of selenite to elemental selenium by Pseudomonas stutzeri NT-I. CHEMICAL ENGINEERING. 74 p. Available at:https://doi.org/10.3303/CET1974089
  79. Tsekhmistrenko, S.I., Bityutskyy, V.S., Tsekhmistrenko, О.S., Melnichenko, О.М., Kharchyshyn, V.M., Tymoshok, N.O., Ponomarenko, N.V., Polishchuk, S.A., Rol1, N.V., Fedorchenko, M.M., Melnichenko, Yu.О., Merzlova, H.V., Shulko, O.P., Demchenko, A.A. (2020). Effects of selenium compounds and toxicant actionon oxidative biomarkers in quails. Ukrainian Journal of Ecology. 10(2), pp. 232–239. Available at:https://doi. org/10.15421/2020_89
  80. Tsekhmistrenko, О.S., Bityutsky, V.S., Spyvac, M.Y., Tsekhmistrenko, S.I., Shadura, U.M. (2017). Perspectives of cerium nanoparticles use in agriculture. The Animal Biology. Lviv, Vol. 19, no. 3. pp. 9–18. Available at:http://rep. btsau.edu.ua/handle/BNAU/1300
  81. Tsekhmistrenko, O., Tsekhmistrenko, S. (2015). Lipid peroxidation in the quails kidney under Cadmium load and Sel-Plex influence. Tehnologija vyrobnyctva i pererobky produkcii'tvarynnyctva: Zb. nauk. prac'[Technology of production and processing of livestock products: Collection of scientific works]. Vol. 1 (116), Bila Tserkva. pp. 203–207. Available at:http://rep.btsau.edu.ua/handle/BNAU/931
  82. Tsekhmistrenko, S. I., Bityutskyy, V. S., Tsekhmistrenko, O. S., Horalskyi, L. P., Tymoshok, N. O., Spivak, M. Y. (2020). Bacterial synthesis of nanoparticles: A green approach. Biosystems Diversity. 28(1), pp. 9–17. Available at:https://doi.org/10.15421/012002
  83. Tsekhmistrenko, S., Bityutskii, V., Tsekhmistrenko, O. (2020). Markers of oxidative stress in the blood of quails under the influence of selenium nanoparticles. Available at:http://rep.btsau.edu.ua/handle/BNAU/4763
  84. Tsekhmistrenko, S.I., Bityutskyy, V.S., Tsekhmistrenko, O.S., Polishchuk, V.M., Polishchuk, S.A., Ponomarenko, N.V., Melnychenko, Y.O., Spivak, M.Y. (2018). Enzyme-likeactivity of nanomaterials. Regulatory Mechanisms in Biosystems. 9(3). pp. 469–476. Available at:https://doi. org/10.15421/021870
  85. Tymoshok, N. O., Kharchuk, M. S., Kaplunenko, V. G., Bityutskyy, V. S., Tsekhmistrenko, S. I., Tsekhmistrenko, O. S., Spivak, M. Y., Melnichenko О. М. (2019). Evaluation of effects of selenium nanoparticles on Bacillus subtilis. Regulatory Mechanisms in Biosystems. 10(4), pp. 544–552. Available at:https://doi.org/10.15421/021980
  86. Vaishnavi, S., Thamaraiselvi, C., Vasanthy, M. (2019). Efficiency of Indigenous Microorganisms in Bioremediation of Tannery Effluent. In Waste Water Recycling and Management. Springer, Singapore. pp. 151–168. Available at:https://doi.org/10.1007/978-981-13-2619-6_13
  87. Vaseghi, Z., Nematollahzadeh, A., Tavakoli, O. (2018). Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: a review. Reviews in Chemical Engineering. 34(4), pp. 529–559. Available at:https://doi.org/10.1515/revce-2017-0005
  88. Wadhwani, S. A., Shedbalkar, U. U., Singh, R., Chopade, B. A. (2016). Biogenic selenium nanoparticles: current status and future prospects. Applied microbiology and biotechnology. 100(6), pp. 2555–2566. Available at:https:// doi.org/10.1007/s00253-016-7300-7
  89. Waghmare, S. R., Mulla, M. N., Marathe, S. R., Sonawane, K. D. (2015). Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech. 5(1), pp. 33–38. Available at:https://doi.org/10.1007/s13205- 014-0196-y
  90. Xu, X., Cheng, W., Liu, X., You, H., Wu, G., Ding, K., Gu, H. (2019). Selenate reduction and selenium enrichment of tea by the endophytic Herbaspirillum sp. strain WT00C. Current microbiology. pp. 1–14. Available at:https:// doi.org/10.1007/s00284-019-01682-z
  91. Yin, H., Qi, Z., Li, M., Ahammed, G. J., Chu, X., Zhou, J. (2019). Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. Ecotoxicology and environmental safety. 169, pp. 911–917. Available at:https://doi.org/10.1016/j.ecoenv.2018.11.080
  92. Yu, Q., Boyanov, M. I., Liu, J., Kemner, K. M., Fein, J. B. (2018). Adsorption of selenite onto Bacillus subtilis: the overlooked role of cell envelope sulfhydryl sites in the microbial conversion of Se (IV). Environmental science & technology. 52(18), pp. 10400–10407. Available at:https:// doi.org/10.1021/acs.est.8b02280
  93. Yumei, L., Yamei, L., Qiang, L., Jie, B. (2017). Rapid biosynthesis of silver nanoparticles based on flocculation and reduction of an exopolysaccharide from arthrobacter sp. B4: its antimicrobial activity and phytotoxicity. Journal of Nanomaterials. Available at:https://doi. org/10.1155/2017/9703614
  94. Zhang, J., Wang, Y., Shao, Z., Li, J., Zan, S., Zhou, S., Yang, R. (2019). Two selenium tolerant Lysinibacillus sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions. Journal of Environmental Sciences. 77, pp. 238–249. Available at:https://doi. org/10.1016/j.jes.2018.08.002
  95. Zhao, P., Li, M., Chen, Y., He, C., Zhang, X., Fan, T., Luo, J. (2019). Selenium-doped calcium carbonate nanoparticles loaded with cisplatin enhance efficiency and reduce side effects. International journal of pharmaceutics. 570 p. 118638. Available at:https://doi.org/10.1016/j.ijpharm.2019.118638
  96. Tsekhmistrenko, O.S., Bityutsʹkyy, V.S., Tsekhmistrenko, S.I., Melʹnychenko, O.M., Tymoshok, N.O., Spivak, M.Ya. (2019). Vykorystannya nanochastynok metaliv ta nemetaliv u ptakhivnytstvi [Use of metal and non-metal nanoparticles in poultry farming]. Tekhnolohiya vyrobnytstva I pererobky produktsiyi tvarynnytstva, № 2, 2019 [Technology of production and processing of livestock products, no. 2, 2019]. Bila Tserkva, pp. 113–130. Available at:http:// rep.btsau.edu.ua/handle/BNAU/3838
  97. Tsekhmistrenko, O.S., Tsekhmistrenko, S.I., Devecha, I.O., Ponomarenko, N.V., Polishchuk, V.M., Yaremchuk, T.S. (2013). Vplyv Sel-pleksu ta kadmijevogo navantazhennja na lipoperoksydaciju [Influence of Sel-plex and cadmium load on lipoperoxidation]. Zbirnyk naukovyh prac' [Collection of scientific works]. Tehnologija vyrobnyctva i pererobky produkcii' tvarynnyctva [Technology of production and processing of livestock products]. Issue 9 (103), pp. 16–19. Available at:http://rep.btsau.edu.ua/handle/BNAU/957
  98. Tsekhmistrenko, O.S., Bityutsʹkyy, V.S., Tsekhmistrenko, S.I. (2020). “Zeleni” tekhnolohiyi u syntezi nanochastynok selenu ["Green" technologies in the synthesis of selenium nanoparticles]. Shlyakhy rozvytku nauky v suchasnykh kryzovykh umovakh: tezy dop I mizhnarodnoyi naukovo-praktychnoyi internet-konferentsiyi, 28-29 travnya 2020 roku [Ways of development of science in modern crisis conditions: theses add. I International Scientific and Practical Internet Conference. May 28-29, 2020]. Dnipro, Vol. 2, pp. 506–509. Available at:http://193.138.93.8/bitstream/ BNAU/4823/1/Zeleni_tekhnolohii.pdf
  99. Tsekhmistrenko, O.S., Tsekhmistrenko, S.I., Bityutsʹkyy, V.S., Melʹnychenko, O.M., Oleshko, O.A. Biomimetychna ta antyoksydantna aktyvnist' nanospoluk dioksydu ceriju [Biomimetic and antioxidant activity of cerium dioxide nanocompounds]. Svit medycyny ta biologii', 2018, № 1 (63) [World of Medicine and Biology, 2018, № 1 (63)]. Poltava, 2018. pp. 196–201. Available at:https://doi.org/10.267254 / 2079-8334-2018-1-63-196-201
AttachmentSize
PDF icon tsehmistrenko_2_2020.pdf752.45 KB