Ви є тут

ТРАНСГЕНЕЗ ЧЕРЕЗ СПЕРМАТОГОНАЛЬНІ СТОВБУРОВІ КЛІТИНИ У ТВАРИННИЦТВІ І ПЕРСПЕКТИВИ ЙОГО ЗАСТОСУВАННЯ У БІЛОЦЕРКІВСЬКОМУ НАУ

Представлено сучасні технології створення трансгенних тварин, проаналізовано їх переваги і недоліки порівняно одна до одної. Висвітлено основи трансгенезу і генетичних модифікацій. Наведено перспективні можливості ринку трансгенних тварин у світі. Обгрунтовано ефективність і доцільність застосування новітньої технології створення трансгенних тваринних моделей через сперматогональні стовбурові клітини.  Проаналізована конкурентоспроможність лабораторії генної зооінженерії з виробництва трансгенних моделей лабораторних тварин, запропонованої для створення в Білоцерківському НАУ. Описано основні і перспективні напрями розвитку діяльності лабораторії.

Ключові слова: генна інженерія, трансгенез, рекомбінантна ДНК, трансгенні тварини, сперматогональні стовбурові клітини, трансплантація сперматогонії. 

 

1. Busso, D., Stierle, M., Thierry, J. C., Moras, D. (2008). A comparison of inoculation methods to simplify recombinant protein expression screening in Escherichia coli, Biotechniques 44, pp. 101–106.
2. Choi, J.H., Lee, S.Y. (2004). Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol, Biotechnol, 64, pp. 625–635.
3. Demain, A.L., Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnol, Adv. 27, pp. 297–306.
4. Palomares, L.A., Estrada-Mondaca, S., Ramirez, O.T. (2004). Production of recombinant proteins: challenges and solutions. Methods Mol, Biol. 267, pp. 15–52.
5. Sorensen, H.P., Mortensen, K.K. (2005). Advanced genetic strategies for recombinant protein expression in Escherichia coli. J., Biotechnol. 115, pp. 113–128.
6. Pedro, A. Prieto, John J Kopchick, Bruce Kelder. (1999). Transgenic animals and nutrition research, Journal of nutritional Biochemistry. 12, pp. 682-695.
7. Merlino, GT. (1991). Transgenic animals in biomedical research.  FASEB J. 5(14), pp. 2996-3001.
8. Sauer, UG1, Kolar, R, Rusche, B. (2005). The use of transgenic animals in biomedical research in Germany. Akademie fuer Tierschutz, Neubiberg, Germany, 22(4), pp. 233-57.
9. Raju Kucherlapati  ( 2013). Francis H. Ruddle (1929–2013): A Pioneer in Human Gene Mapping, 24, pp. 9619–9620.
10. Adams, J.M., Harris, A.W., Pinkert, C.A., Corcoran, L.M., Alexander, W.S., Cory, S., Palmiter, R.D., Brinster, R.L. (1985). The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature, 318(6046):533-8, pp. 12-18.
11. Babinet, C, Farza, H, Morello, D, Hadchouel, M, Pourcel, C. (1985). Specific expression of hepatitis B surface antigen (HBsAg) in transgenic mice. Science, 230(4730):1160-3 p.
12. Pursel, V.G., RexroadJr, C.E., Palmiter, R.D., Brinster, R.L., Hammer, R.E. (1988). Gene transfer for increased animal growth. Biomechanisms Regulating Growth and Development, pp. 77-85.
13. Wall, R.J., Seidel, Jr. G.E. (1992). Transgenic farm animals – а critical analysis. International Journal of animal reproduction, Volume 38, Issue 2, pp. 337–357.
14. Brinster, R.L., Snadgre, E.P., Behringer, R.R., Palmiter, R.D. (1989). No simple solution for making transgenic mice, Cell. 59, pp. 239-241.
15. Lavitrano, M. (1989). Sperm cells as vector for inducing foreign DNA into egss: Genetic transformation in mice, Cell. 57, pp. 723-725.
16. Brem, G. (1993).Transgenic animals. In biotechnology, VCN Press, pp. 745-832.
17. Chan, A.W.S. (2010). Transgenic animals: current and alternative strategies, Cloning. V.1, no.1, pp. 25-46.
18. Lapinski, P.E., Bauler, T.J., Brown, E.J., Hughes, E.D., Saunders, T.L., King, P.D. (2007). Generation of mice with a conditional allele of the p120 Ras GTPase-activating protein, Genesis. 45, pp. 762-767.
19. Ginzinger, D.G.(2002). Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream, Exp. Hematol.30, pp. 503-512.
20. Soliman, G.A., Ishida-Takahashi, R., Gong, Y., Jones, J.C., Leshan, R.L., Saunders, T.L., Fingar, D.C., Myers, M.G. (2007). A simple qPCR-based method to detect correct insertion of gomologous targeting vectors in murine ES cells, Transgenic Res. 16, pp. 665-670.
21. Van, Ree J1, Zhou, W, Li M, van Deursen, JM. (2011). Transgenesis in mouse embryonic stem cells. Methods Mol Biol. 2011; Transgenic Mouse Methods and Protocols. Part of the Methods in Molecular Biology book series (MIMB) 693, pp. 143-162.
22. Ko, B. S., Chang, T. C., Shyue, S. K., Chen, Y. C., Liou, J. Y. (2009). An efficient transfection method for mouse embryonic stem cells, Gene Therapy. 16, pp. 154–158.
23. Pfeifer, A., Ikawa, M., Dayn, Y., Verma, I. M. (2001). Transgenesis by lentiviral vectors: Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos, 99, pp. 2140-2145.
24. Kawamata, M., Ochiya, T. (2010). Generation of genetically modified rats from embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 107, pp. 14223-14228.
25. Park, S. M., Song, S. J., Uhm, S. J., Cho, S. G., Park, S. P., Lim, J. H., Lee, H. T. (2004). Generation of Embryonic Stem Cell-derived Transgenic Mice by Using Tetraploid Complementation. Asian-Aust. J. Anim, Sci. 17, pp. 1641-1646.
26.  Gerlai, R. (2016). Gene Targeting Using Homologous Recombination in Embryonic Stem Cells: The Future for Behavior Genetics? Frontiers in Genetics, 17, 43 p.
27. Chang, Tong, Guanyi Huang, Charles, Ashton, Ping, Li & Qi-Long, Ying. (2011). Generating gene knockout rats by homologous recombination in embryonic stem cells, Nature protocols. 6, pp. 827–844.
28. Ellenbroek, B. and Youn, J. (2016). Rodent models in neuroscience research: is it a rat race? Disease Models & Mechanisms. 9, pp. 1079-1087.
29. Iannaccone ,P.M., Jacob, H.J. (2009). Rats! Disease models mechanisms, 2 (5-6), pp. 206-210.
30. Penny, Hawkins, Rachel, Armstrong, Tania, Boden, Paul, Garside, Katherine, Knight, Elliot, Lilley, Michael, Seed, Michael, Wilkinson, Richard O. Williams. (2015). Applying refinement to the use of mice and rats in rheumatoid arthritis research, Inflammopharmacology, 23, pp. 131–150.
31. Nemudryi ,A.A., Valetdinova, K.R., Medvedev, S.P., Zakian, S.M. (2014). TALEN and CRISPR/Cas Genome Editing Systems: Tools of Discovery, Acta Naturae. 6(3), pp. 19–40.
32. Heidi, Ledford. (2016). CRISPR: gene editing is just the beginning. Nature, 531, pp. 156-159.
33. Padilla-Carlin, D.J., McMurray, D.N., Hickey, A.J. (2008). The Guinea Pig as a Model of Infectious Diseases. Comparative Medicine, 58(4), pp. 324–340.
34. Clark, S., Hall, Y., Williams, A. (2015). Animal models of tuberculosis: Guinea pigs. Cold Spring Harbor Perspectives Medicine, 5, pp. 1-9.
35. Hickey, A.J. (2011). Guinea Pig Model of Infectious Disease – Viral Infections, Current Drug Targets, 12, pp. 1018-1023.
36. Aponte, P.M. (2015). Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine, World Journal Stem Cells, 26, pp. 669–680.
37. Han, S.Y., Gupta, M.K., Uhm, S.J., Lee, H.T. (2009). Isolation and In vitro Culture of Pig Spermatogonial Stem Cell. Asian-Aust, Journal Animal Science, 22, pp. 187 – 193.
38. Chapman, K.M., Saidley-Alsaadi D., Syvyk, A.E., Shirley, J.R., Thompson, L.M., Hamra, K.F. ( 2011). Rat Spermatogonial Stem Cell-Mediated, Advanced Protocols for Animal Transgenesis, pp. 237-266.
39. Oliveira de Barros, F.R., Giassetti, M.I., Visintin, J.A. (2012). Spermatogonial Stem Cells and Animal Transgenesis.  Innovations in Biotechnology, ISBN: 978-953-51-0096-6, InTech, pp. 303-318.
40. Mito Kanatsu-Shinohara,  Megumi, Kato,  Masanori, Takehashi,  Hiroko, Morimoto,  Seiji, Takashima, Shinichiro, Chuma,  Norio, Nakatsuji,  Masumi, Hirabayashi,  Takashi ,Shinohara. (2008). Production of Transgenic Rats via Lentiviral Transduction and Xenogeneic Transplantation of  Spermatogonial Stem Cells, Biology of Reproduction, 79, pp. 1121–1128.
41. Jinzhou, Qin, Haixia, Xu, Pengfei, Zhang, Conghui, Zhang, Zhendong, Zhu, Rongfeng, Qu, Yuwei, Qin, Wenxian, Zeng (2015). An efficient strategy for generation of transgenic mice by lentiviral transduction of male germline stem cells in vivo. Journal of Animal Science and Biotechnology, DOI 10.1186/s40104-015-0058-4.
42. Izsvák, Z., Fröhlich, J, Grabundzija, I., Shirley, J.R., Powell, H.M., Chapman, K.M., Ivics, Z.,  Hamra, F.K. (2010). Generating knockout rats by transposon mutagenesis in spermatogonial stem cells, Nature Methods, 7, pp. 443-445.
43. Y,. Ma, B. Shen, X. Zhang, Y. Lu, W. Chen, J. Ma, X. Huang, L. Zhang.  (2014). Heritable multiplex genetic engineering in rats using CRISPR/Cas9, PLoS one. 9, e89413.
44. W. Zeng, L. Tang, A. Bondareva, A. Honaramooz, V. Tanco, C. Dores, S. Megee, M. Modelski, J.R. Rodriguez-Sosa, M. Paczkowski, et al. (2013). Viral transduction of male germline stem cells results in transgene transmission after germ cell transplantation in pigs, Biology Reproduction, 88, 27 p.
45. W. Ni, J. Qiao, S. Hu, X. Zhao, M. Regouski, M. Yang, I.A. Polejaeva, C. Chen. (2014). Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS ONE, 9, e106718.
46. Chapman, K.M., Medrano, G.A., Ober, C., Hamra, K.F. (2015). Targeted Germline Modifications in Rats Using CRISPR/Cas9 and Spermatogonial Stem Cells, Cell reports, 10, pp. 1828–1835.
47. Jens Ehmcke, Joachim, Wistuba,  Stefan Schlatt. (2006). Spermatogonial stem cells: questions, models and perspectives. Human Reproduction Update. V. 12, 3, pp. 275–282.
48. Masanori, Takehashi, Mito Kanatsu-Shinohara, Takashi Shinohara. (2010). Generation of genetically modified animals using spermatogonial stem cells, Development, Growth & Differentiation. 52, pp. 303–310.
49. Syvyk, A.E., Chapman, K.M., Hamra, K.F. (2011). ERBB gene family signaling molecules in the rat testis. Poster presentation, American Society of Andrology, 36 th Annual Meeting, pp. 47-48.
50. Jaichande,r P., Syvyk, A.E., Syvyk, T.L., Medrano, G.M., Chapman, K. M. and Hamra K.F. (2013). Inducible gene regulation in the rat germline. XXII-nd North American Testis workshop, pp. 77-85.
 
ДолученняРозмір
PDF icon sivik_btf_1-2_2017.pdf6.45 МБ