Ви є тут

ВИКОРИСТАННЯ НАНОЧАСТИНОК МЕТАЛІВ ТА НЕМЕТАЛІВ У ПТАХІВНИЦТВІ

Узагальнено дані світової та вітчизняної літератури щодо особливостей кумуляції наночастинок мікроелементів в організмі, їх впливу на метаболізм, редокс-процеси та продуктивність птиці. Акцентовано увагу на токсичності різних форм і джерел розглянутих елементів, їх взаємовплив на біодоступність, антагонізм та швидкість виведення з організму. Необхідність у дослідженні особливостей використання наночастинок та їх ефективності у виробництві продукції тваринництва постійно зростає. Наведено докази позитивного застосування наноформ елементів (цинку, срібла, селену, церію, заліза) у раціонах різних видів сільськогосподарської птиці завдяки їх метаболічній, антимікробній дії, впливу на перетравлення та регуляцію роботи кишечнику. Проаналізовані дані свідчать, що наночастинки металів та неметалів у тваринництві є альтернативою кормовим антибіотикам задля антибактеріальної дії, підвищення продуктивності тварин та птиці, можуть активізувати метаболізм шляхом стимулювання діяльності гормонів, оптимізувати імунну відповідь організму, індукувати синтез металотіонеїнів та сприяти зростанню коефіцієнта конверсії корму. Встановлено, що наночастинки металів та неметалів у разі потрапляння до кишечнику знижують мінеральний антагонізм, що сприяє підвищенню ефективності травлення. Встановлено зміни прооксидантно-оксидантного статусу крові тварин за використання досліджуваних наночастинок та зміни показників гомеостазу, що є позитивним для домашньої птиці через підвищення продуктивності, інтенсифікацію виробництва яєць, їх ваги та швидкості запліднення інкубаційних яєць. Встановлено вплив наночастинок на редокс-гомеостаз та процеси пероксидного окиснення ліпідів та протеїнів. Аргументовано використання нанорозмірних препаратів для використання у біології, медицині, ветеринарії, сільському господарстві та необхідність подальших досліджень для вивчення всіх можливих механізмів біологічної дії наноструктур.

Ключові слова: мікроелементи, наночастинки, птиця, живлення, срібло, цинк, селен, діоксид церію.

  1. Наноматериалы и нанотехнологии в ветеринарной практике / В.Б. Борисевич и др.; под редакцией В.Б. Борисевич, В.Г. Каплуненко. К.: Авіцена, 2012. 512 с.
  2. Показники мінерального обміну в курок-несучок за впливу нанохелатів селену і цинку та вітаміну Е /М.П. Ніщеменко та ін. Науковий вісник ветеринарної медицини. 2019. № 1. С. 49–56.  Doi: http://doi.org/10.33245/ 2310-4902-2019-149-1-49-56
  3. Романова А.П., Титова В.В., Макаева А.М. Особенности применения наноразмерных форм микроэлементов в сельском хозяйстве (обзор). Животноводство и кормопроизводство. 2018. № 101(2). С. 237–250.
  4. Вплив нанокристалічного діоксиду церію на яєчну продуктивність перепелів / М.Я. Співак та ін. Сучасне птахівництво. 2013. № 3. C. 22–24.
  5. Вплив наночастинок діоксиду церію на інтенсивність росту та споживання кормів молодняком перепілок / М.Я. Співак та ін. Ветеринарна медицина. 2013. № 97. C. 470–472.
  6. Доклінічні дослідження гострої токсичності нанокристалічного діоксиду церію / Ю.М. Шадура та ін. Вісник ЖНАЕУ. 2015. №. 2 (50). C. 358–363.
  7. Біохімічні показники та продуктивні якості курей-несучок за використання наночастинок діоксиду церію. Ю.М. Шадура та ін. Технологія виробництва і переробки продукції тваринництва. 2015. № 2 (120). C. 174–177.
  8. Zinc requirements of Japanese quails (Coturnix coturnix japonica) by assessing dose-evaluating response of zinc oxide nano-particle supplementation’ / Abbasi M., et al. Poultry Science Journal. 2017. Vol. 5(2). P. 131–143. Doi: http://doi.org/10.22069/psj.2017.13227.1262.
  9. Abedini M., Shariatmadari F., Torshizi M.A.K., Ahmadi H. Effects of zinc oxide nanoparticles on the egg quality, immune response, zinc retention, and blood parameters of laying hens in the late phase of production. Journal of Animal Physiology and Animal Nutrition. 2018. Vol. 102 (2). P. 1–10. Doi: http://doi.org/10.111/jpn.12871.
  10. Adu O.A., Igbasan F.A. Adebiyi O.A. Effect of dietary rare earth element on performance and carcass characte-ristics of broiler. Journal of Sustainable Technology. 2011. Vol. 2. P. 118–126. Doi: http://doi.org/10.1111/j.1439-0396.2008.00884.x.
  11. Green nanotechnology: a review on green synthesis of silver nanoparticles – an ecofriendly approach / Ahmad S., et al. International journal of nanomedicine. 2019. Vol. 14. P. 5087. Doi: http://doi.org/10.2147 / IJN.S200254
  12. Ahmadi M., Ahmadian A., Seidavi A.R. Effect of Different Levels of Nano-selenium on Performance, Blood Parameters, Immunity and Carcass Characteristics of Broiler Chickens. Poultry Science Journal. 2018. Vol. 6(1). P. 99–108. Doi: http://doi.org/10.22069/PSJ.2018.13815.1276.
  13. Albrecht M.A., Evans C.W. Raston C.L. Green chemistry and the health implications of nanoparticles. Green chemistry. 2006. Vol. 8(5). P. 417–432. Doi: http://doi.org/10.1039/B517131H.
  14. Aparna N. Karunakaran R. Effect of Selenium Nanoparticles Supplementation on Oxidation Resistance of Broiler Chicken. Indian Journal of Science and Technology. 2016. 9(S1). P. 1–5. Doi: http://doi.org/10.17485/ijst/2016/ v9iS1/106334.
  15. Effect of dietary nano zinc oxide supplementation on performance and zinc bioavailability in broilers / Asheer M., et al. Indian Journal of Poultry Science. 2018. Vol. 53(1). P. 70–75. Doi:http://doi.org/10.5958/0974-8180.2018.00004.1.
  16. Bami M.K., Afsharmanesh M., Salarmoini M. Tavakoli H. Effect of zinc oxide nanoparticles and Bacillus coagulans as probiotic on growth, histomorphology of intestine, and immune parameters in broiler chickens. Comparative Clinical Pathology. 2018. Vol. 27(2). P. 399–406. Doi:http://doi.org/10.1007/s00580-017-2605-1.
  17. In ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos / Bhanja S., et al. International journal of molecular sciences. 2015. Vol. 16(5). P. 9484–9503. Doi:http://doi.org/10.3390/ijms16059484.
  18. Perspectives of cerium nanopaticles use in agriculture / Bityutsky V., et al. The Animal Biology. 2017. Vol. 19 (3). P. 9–18. URL: http://rep.btsau.edu.ua/handle/BNAU/1300.
  19.  Effects of Different Dietary Selenium Sources Including Probiotics Mixture on Growth Performance, Feed Utilization and Serum Biochemical Profile of Quails / Bityutskyy V., et al. In: Nadykto V. (eds) Modern Development Paths of Agricultural Production. Springer, Cham. 2019. Р. 623–632. Doi: https://doi.org/10.1007/978-3-030-14918-5_61
  20. Effects of cerium oxide supplementation to laying hen diets on performance, egg quality, some antioxidant enzymes in serum and lipid oxidation in egg yolk / Bölükbaşı S.C., et al. Journal of animal physiology and animal nutrition. 2016. Vol. 100(4). P. 686–693. Doi:http://doi.org/10.1111/jpn.12429.
  21. Effects of organic, inorganic, and nano-Se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress / Boostani A., et al. Livestock science. 2015. Vol. 178. P. 330–336. Doi:https://doi.org/10.1016/j.livsci.2015.05.004i.
  22. The effects of organic, inorganic, and nano-selenium on blood attributes in broiler chickens exposed to oxidative stress / Boostani A., et al. Acta Scientiae Veterinariae. 2015. Vol. 43. P. 1–6.
  23. Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers / Cai S.J., et al. Poultry Science. 2012. Vol. 91 (10). P. 2532–2539. Doi:http://doi.org/10.3382/ps.2012-02160.
  24. Choi S.J. Choy J.H. Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction. International journal of nanomedicine. 2014. Vol. 9(Suppl 2). P. 261–269. Doi:http://doi.org/10.2147/IJN.S57920.
  25. Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects / Das R.K., et al. Nanotechnology for Environmental Engineering. 2017. Vol. 2(1). 18 p. Doi:https://doi.org/10.1007/s41204-017-0029-4
  26. Duffy L.L., Osmond-McLeod M.J., Judy J., King T. Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food control. 2018. Vol. 92. P. 293–300. Doi:https://doi.org/10.1016/j.foodcont.2018.05.008.
  27. El-Katcha M., Soltan M.A. El-Badry M. Effect of Dietary Replacement of Inorganic Zinc by Organic or Nanoparticles Sources on Growth Performance, Immune Response and Intestinal Histopathology of Broiler Chicken. Alexandria Journal for Veterinary Sciences. 2017. Vol. 55(2). pp. 129–145. Doi:https://doi.org/10.5455/ajvs.266925.
  28. Fathi M. Effects of zinc oxide nanoparticles supplementation on mortality due to ascites and performance growth in broiler chickens. Iranian Journal of Applied Animal Science. 2016. Vol. 6(2). P. 389–394.
  29. Fawaz M.A., Südekum K.H., Hassan H.A. Abdel-Wareth A.A. Effects of nanoparticles of zinc oxide on productive performance of laying hens.–a review. SVU-International Journal of Agricultural Sciences. 2019. Vol. 1(1). P. 13–20.
  30. The effect of dietary silver nanoparticles and inorganic selenium supplementation on performance and digestive organs of broilers during starter period / Felehgari K., et al.  Bull. Env. Pharmacol. Life Sci. 2013. Vol. 2(8). P. 104–108.
  31. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats / Geraets L., et al. Particle and fibre toxicology. 2014. Vol. 11(1). 30 p. Doi: https://doi.org/ 10.1186/1743-8977-11-30.
  32. Gong Z. A study of feeding Rare Earth Elements to broiler-type breeding bird. Chinese Poultry. 1996. 7. 43 p. Doi:https://doi.org/10.3382/japr/pfv052.
  33. Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing / Gopi M., et al. Int J Pharmacol. 2017. Vol. 13. P. 724–731. Doi:https://doi.org/10.3923/ ijp.2017.724.731
  34. Effect of nano-sized, elemental selenium supplement on the proteome of chicken liver / Gulyás G., et al. Journal of animal physiology and animal nutrition. 2017. Vol. 101(3). P. 502–510. Doi:https://doi.org/10.1111/jpn.12459.
  35. Impact of dietary nano-zinc oxide on immune response and antioxidant defense of broiler chickens / Hafez A., et al. Environmental Science and Pollution Research. 2019. P. 1–7. Doi:https://doi.org/10.1007/s11356-019-04344-6.
  36. Studies on the effect of rare earth elements in piglets / He M.L., et al. Mengen und Spurenelemente. 1999. 19. P. 3–4.
  37. He M.L., Wehr U., Rambeck W.A. Effect of low doses of dietary rare earth elements on growth performance of broilers. Journal of animal physiology and animal nutrition. 2010. Vol. 94(1). P. 86–92. Doi:https://doi.org/10.1111/j.1439-0396.2008.00884.x.
  38. Holtzclaw W. D., Dinkova-Kostova A. T., Talalay P. Protection against electrophile and oxidative stress by induction of phase 2 genes: the quest for the elusive sensor that responds to inducers. Advances in enzyme regulation. 2004. Vol. 44(1). P. 335–367. Doi:https://doi.org/10.1016/j.advenzreg.2003.11.013
  39. Hu Z., Richter H., Sparovek G. Schnug E. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. Journal of plant nutrition. 2004. Vol. 27(1). P. 183–220. Doi:https://doi.org/ 10.1081/PLN-120027555.
  40. Hulla J.E., Sahu S.C. Hayes A.W. Nanotechnology: History and future. Human & experimental toxicology. 2015. Vol. 34(12). P. 1318–1321. Doi: https://doi.org/10.1177/0960327115603588.
  41. Ibrahim D., Ali H.A., El-Mandrawy S.A. Effects of different zinc sources on performance, bio distribution of minerals and expression of genes related to metabolism of broiler chickens. Zagazig Vet J. 2017. Vol. 45. P. 292–304. Doi:https://doi.org/10.5281 / zenoodo.1000462
  42. Joshua P.P., Valli C., Balakrishnan V. Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken. Veterinary world. 2016. Vol. 9(3). P. 287–294. Doi: https: //doi.org/10.14202/vetworld.2016.287-294.
  43. The effect of different levels of Cu, Zn and Mn nanoparticles in hen turkey diet on the activity of aminopeptidases / Jóźwik A., et al. Molecules. 2018. Vol. 23(5). 1150 p. Doi:https://doi.org/10.3390/molecules23051150.
  44. A question mark on zinc deficiency in 185 million people in Pakistan – possible way out / Khalid N., et al. Critical reviews in food science and nutrition. 2014. Vol. 54(9). P. 1222–1240. Doi:https://doi.org/10.1080/ 10408398.2011.630541.
  45. The greener synthesis of nanoparticles / Kharissova O.V., et al. Trends in biotechnology. 2013. Vol. 31(4). P. 240–248. Doi:https://doi.org/10.1016/j.tibtech.2013.01.003
  46. Khatami M., Alijani H.Q., Sharifi I. Biosynthesis of bimetallic and core-shell nanoparticles: their biomedical applications–a review. IET nanobiotechnology. 2018. Vol. 12(7). P. 879–887. Doi:https://doi.org/10.1049 / iet-nbt.2017.0308
  47. King J.C. Zinc: an essential but elusive nutrient. The American journal of clinical nutrition. 2011. Vol. 94(2). P. 679–684.  Doi:https://doi.org/10.3945/ajcn.110.005744.
  48. Klochkov V.K., Malyshenko A.I., Sedykh O.O., Malyukin Y.V. Wet chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO-: Eu³⁺(Re= La, Gd, Y) with rod-like and spindle-like shape. Functional materials. 2011. Vol. 1. P. 111–115.
  49. Kool P.L., Ortiz M.D., van Gestel C.A. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environmental Pollution. 2011. Vol. 159(10). P. 2713–2719.  Doi:https://doi.org/10.1016/j.envpol.2011.05.021.
  50. Kulak E., Ognik K., Stępniowska A., Sembratowicz I. The effect of administration of silver nanoparticles on silver accumulation in tissues and the immune and antioxidant status of chickens. Journal of Animal and Feed Sciences. 2018. Vol. 27(1). pp. 44–54. Doi: https://doi.org/10.22358/jafs/84978/2018.
  51. Lansdown A.B. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Advances in pharmacological sciences. 2010. Vol. 16 p. Doi:https://doi.org/10.1155/2010/910686.
  52. Effects of different selenium sources on growth performance, antioxidant capacity and meat quality of local Chinese Subei chickens / Li J.L., et al. Biological trace element research. 2018. Vol. 181(2). P. 340–346. Doi:https://doi.org/ 10.1007/s12011-017-1049-4 39.
  53. Effect of nano-zinc oxide on the production and dressing performance of broiler / Lina T., et al. Chinese Agricultural Science Bulletin. 2009. Vol. 2(003).
  54. Effect of selenium sources on growth performance and tissue selenium retention in yellow broiler chicks / Liu S., et al. Journal of applied animal research. 2015. Vol. 43(4). P. 487–490. Doi:https://doi.org/10.1080/ 09712119.2014.978780.
  55. Magesh S., Chen Y., Hu L. Small Molecule Modulators of K eap1-N rf2-ARE Pathway as Potential Preventive and Therapeutic Agents. Medicinal research reviews. 2012. Vol. 32(4). P. 687–726.  Doi:https://doi.org/10.1002/med.21257
  56. Mahmoud H.E.D., Ijiri D., Ebeid T.A., Ohtsuka A. Effects of dietary nano-selenium supplementation on growth performance, antioxidative status, and immunity in broiler chickens under thermoneutral and high ambient temperature conditions. The Journal of Poultry Science. 2016. P.0150133. Doi:https://doi.org/10.2141/jpsa.0150133.
  57. Mao S.Y., Lien T.F. Effects of nanosized zinc oxide and γ-polyglutamic acid on eggshell quality and serum parameters of aged laying hens. Archives of animal nutrition. 2017. Vol. 71(5). P. 373–383. Doi:https://doi. org/10.1080/1745039X.2017.1355600.
  58. McShan D., Ray P.C., Yu H. Molecular toxicity mechanism of nanosilver. Journal of food and drug analysis. 2014. Vol. 22(1). P. 116–127.  Doi:https://doi.org/10.1016/j.jfda.2014.01.010.
  59. Growth performance and serum biochemical parameters as affected by nano zinc supplementation in layer chicks / Mishra A., et al. Indian J. Anim. Nutr. 2014. Vol. 31(4). P. 384–388.
  60. Mohammadi F., Ahmadi F., Amiri A.M. Effect of zinc oxide nanoparticles on carcass parameters, relative weight of digestive and lymphoid organs of broiler fed wet diet during the starter period. International Journal of Biosciences. 2015. Vol. 6(2). P. 389–394. Doi:https://doi.org/10.12692/ijb/6.2.389-394.
  61. Mohammadi H., Farzinpour A., Vaziry A. Reproductive performance of breeder quails fed diets supplemented with L-cysteine-coated iron oxide nanoparticles. Reproduction in Domestic Animals. 2017. Vol. 52(2). P. 298–304. Doi:https://doi.org/10.1111/rda.12902.
  62. Mohammadi V., Ghazanfari S., Mohammadi-Sangcheshmeh A., Nazaran M.H. Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. British poultry science. 2015. Vol. 56(4). P. 486–493. Doi:https://doi.org/10.1080/00071668.2015.1064093.
  63. Mohan P., Mala R. May. A review on the effect of ZnO nanomaterial as supplement in poultry farming. In AIP Conference Proceedings. 2019. Vol. 2105. No. 1. P. 020030. AIP Publishing. Doi:https://doi.org/10.1063/1.5100715.
  64. Effects of dietary nano-selenium on tissue selenium deposition, antioxidant status and immune functions in layer chicks / Mohapatra P., et al. Int J Pharmacol. 2014. Vol. 10(3). P. 160–167.
  65. Effect of silver nanoparticles on the immune, redox, and lipid status of chicken blood / Ognik K., et al. Czech Journal of Animal Science. 2016. Vol. 61(10). P. 450–461. Doi:https://doi.org/10.17221/80/2015-CJAS.
  66. Ognik K., Stępniowska A., Cholewińska E., Kozłowski K. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poultry science. 2016. Vol. 95(9). P. 2045–2051. Doi:https://doi.org/10.3382/ps/pew200.
  67. Olgun O., Yildiz A.Ö. Effects of dietary supplementation of inorganic, organic or nano zinc forms on performance, eggshell quality, and bone characteristics in laying hens. Annals of Animal Science. 2017. Vol. 17(2). P. 463–476. Doi:https://doi.org/10.1515/aoas-2016-0055.
  68. Ou X., Guo Z., Wang J. The effects of rare earth element additive in feed on piglets. Livestock and Poultry Industry. 2000. Vol. 4(2). P. 21–22.
  69. Pal G., Rai P., Pandey A. Green synthesis of nanoparticles: A greener approach for a cleaner future. In Green Synthesis, Characterization and Applications of Nanoparticles. 2019. P. 1–26. Elsevier. Doi:https://doi.org/10.1016/B978-0-08-102579-6.00001-0
  70. Pandav P.V. Puranik P.R. Trials on metal enriched Spirulina platensis supplementation on poultry growth. Glob J Bio-Science Technol. 2015. Vol. 4. P. 128–134.
  71. Peng D., Zhang J., Liu Q., Taylor E.W. Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. Journal of Inorganic Biochemistry. 2007. Vol. 101(10). P. 1457–1463. Doi:https://doi.org/10.1016/j.jinorgbio.2007.06.021.
  72. Pieniz S., Okeke B.C., Andreazza R., Brandelli A. Evaluation of selenite bioremoval from liquid culture by Enterococcus species. Microbiol. Res. 2011. Vol. 166. P. 176–185. Doi:https://doi.org/10.1016/j.micres.2010.03.005
  73. Investigating the effect of in ovo injection of silver nanoparticles on fat uptake and development in broiler and layer hatchlings / Pineda L., et al. Journal of Nanotechnology. 2012. Doi:https://doi.org/10.1155/2012/212486.
  74. Effect of nanoparticles of silver and gold on metabolic rate and development of broiler and layer embryos / Pineda L., et al. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2012. Vol. 161(3). P. 315–319. Doi:https://doi.org/10.1016/j.cbpa.2011.11.013.
  75. Synthesis and application of nano minerals in livestock industry / Rajendran D., et al. Animal Nutrition and Reproductive Physiology (Recent Concepts). Satish Serial Publishing House, Delhi. 2013. P. 517–530.
  76. Ramiah S.K., Awad E.A., Mookiah S., Idrus Z. Effects of zinc oxide nanoparticles on growth performance and concentrations of malondialdehyde, zinc in tissues, and corticosterone in broiler chickens under heat stress conditions. Poultry science. 2019. P. 1–11. Doi:https://doi.org/10.3382/ps/pez093.
  77. Ravikumar S., Gokulakrishnan R. The inhibitory effect of metal oxide nanoparticles against poultry pathogens. International Journal of Pharmaceutical Sciences and Drug Research. 2012. Vol. 4(2). P. 157–159.
  78. Sagar P.D., Mandal A.B., Akbar N., Dinani O.P. Effect of different levels and sources of zinc on growth performance and immunity of broiler chicken during summer. International Journal of Current Microbiology and Applied Sciences. 2018. Vol. 7(5). P. 459–471. Doi:https://doi.org/10.20546/ijcmas.2018.705.058.
  79. Saini K., Tomar S.K., Sangwan V., Bhushan B. Evaluation of lactobacilli from human sources for uptakeand accumulation of selenium. Biol. Trace Elem. Res. 2014. Vol. 160. P. 433–436. Doi:https://doi.org/10.1007/s12011-014-0065-x
  80. Saki A.A., Abbasinezhad M., Rafati A.A. Iron nanoparticles and methionine hydroxy analogue chelate in ovo feeding of broiler chickens. International Journal of Nanoscience and Nanotechnology. 2014. Vol. 10(3). P. 187–196.
  81. Nutritional evaluation of Selenium-methionine nanocomposite as a novel dietary supplement for laying hens / Salah-Eldin T.A., et al. J. Anim. Health Prod. 2015. Vol. 3(3). P. 64–72. Doi:https://doi.org/10.14737/journal.jahp/2015/3.3.64.72.
  82. Saleh A.A. Effect of dietary mixture of Aspergillus probiotic and selenium nano-particles on growth, nutrient digestibilities, selected blood parameters and muscle fatty acid profile in broiler chickens. Anim Sci Pap Rep. 2014. Vol. 32. P. 65–79.
  83. Sanjay S.S. Safe nano is green nano. In Green Synthesis, Characterization and Applications of  Nanoparticles. 2019. P. 27–36. Elsevier. Doi:https://doi.org/10.1016/B978-0-08-102579-6.00002-2
  84. Sardar M., Mazumder J.A. Biomolecules Assisted Synthesis of Metal Nanoparticles. In Environmental Nanotechnology. 2019. P. 1–23. Springer, Cham. Doi:https://doi.org/10.1007/978-3-319-98708-8_1
  85. Selenium nanoparticles for stress-resilient fish and livestock / Sarkar B., et al. Nanoscale research letters. 2015. Vol. 10(1). 371 p. Doi:https://doi.org/10.1186/s11671-015-1073-2.
  86. Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails / Sawosz E., et al. Archives of Animal Nutrition. 2007. Vol. 61(6). P. 444–451. Doi:https://doi.org/10.1080/ 17450390701664314.
  87. Nano-nutrition of chicken embryos. The effect of silver nanoparticles and ATP on expression of chosen genes involved in myogenesis / Sawosz F., et al. Archives of animal nutrition. 2013. Vol. 67(5). P. 347–355. Doi:https://doi. org/10.1080/1745039X.2013.830520.
  88. Selim N.A., Amira M., Khosht A.R., El-Hakim A.A. Effect of sources and inclusion levels of zinc in broiler diets containing different vegetable oils during summer season conditions on meat quality. International Journal of Poultry Science. 2014. Vol. 13(11). P. 619–626. Doi:https://doi.org/10.3923/ijps.2014.619.626.
  89. Effect of inclusion inorganic, organic or nano selenium forms in broiler diets on: 2-Physiological, immunological and toxicity statuses of broiler chicks / Selim N.A., et al. International Journal of Poultry Science. 2015. Vol. 14(3). 144 p. Doi:https://doi.org/10.3923/ijps.2015.144.155.
  90. Senthil Kumaran C.K., Sugapriya S., Manivannan N., Chandar Shekar B. Effect on the growth performance of broiler chickens by selenium nanoparticles supplementation. Nano Vision. 2015. Vol. 5(4–6). P. 161–168.
  91. Green synthesis of silver nanoparticles using aqueous leaf extract of Premna integrifolia (L.) rich in polyphenols and evaluation of their antioxidant, antibacterial and cytotoxic activity / Singh C., et al. Biotechnology & Biotechnological Equipment. 2019. P. 1–13. Doi:https://doi.org/10.1080/13102818.2019.1577699
  92. Surai P.F., Kochish I.I., Velichko O.A. Nano-Se Assimilation and Action in Poultry and Other Monogastric Animals: Is Gut Microbiota an Answer? Nanoscale research letters. 2017. Vol. 12(1). 612 p. Doi:https://doi.org/10.1186/s11671-017-2383-3.
  93. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review / Swain P.S., et al. Animal Nutrition. 2(3). 2016. P. 134–141. Doi:https://doi.org/10.1016/j.aninu.2016.06.003.
  94. Thill A., Zeyons O., Spalla O., Chauvat F., Rose J., Auffan M., Flank A.M. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environmental science & technology. 2006. Vol. 40(19). P. 6151–6156. Doi:https://doi.org/10.1021/es060999b.
  95. Effects of nano-zinc oxide on antioxidant function in broilers / Tian L., et al. Chinese Journal of Animal Nutrition. 2009. Vol. 21(4). P. 534–539.
  96. Effects of nanosize zinc oxide on zinc retention, eggshell quality, immune response and serum parameters of aged laying hens / Tsai Y.H., et al. Animal feed science and technology. 2016. Vol. 213. P. 99–107. Doi:https://doi.org/10.1016/ j.anifeedsci.2016.01.009.
  97. Tsekhmistrenko O., Tsekhmistrenko S. Lipid peroxidation in the quails kidney under Cadmium load and Sel-Plex influence. Технологія виробництва і переробки продукції тваринництва: Зб. наук. праць. 2015. Vol. 1 (116). P. 203–207. URL:http://rep.btsau.edu.ua/handle/BNAU/931.
  98. Biomimetic and antioxidant activity of nanocrystalline cerium dioxide / Tsekhmistrenko O.S., et al. World of Medicine and Biology. 2018. Vol. 14(63). P. 196–201. Doi:https://doi.org/10.267254 / 2079-8334-2018-1-63-196-201
  99. Enzyme-like activity of nanomaterials / Tsekhmistrenko S.I., et al. Regulatory Mechanisms in Biosystems. 2018. Vol. 9(3). P. 469–476. Doi: https://doi.org/10.15421/021870
  100. The Anti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases / Tu W., et al. Aging and disease. 2019. Vol. 10(3). 637p. Doi:https://doi.org/10.14336 / AD.2018.0513
  101. Usama T.M. Silver nanoparticles in poultry production. Journal of Advanced Veterinary Research. 2012. Vol. 2 (4). P. 303–306.
  102. Influence of silver nanoparticles on growth and health of broiler chickens after infection with Campylobacter jejuni / Vadalasetty K.P., et al. BMC veterinary research. 2018. Vol. 14(1). P. 1–11. Doi:https://doi.org/10.1186/ s12917-017-1323-x.
  103. Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers / Wang C., et al. Poultry science. 2011. Vol. 90(10). P. 2223–2228. Doi:https://doi.org/10.3382/ps.2011-01511.
  104. Wang M.Q., Xu Z.R. Effect of supplemental lanthanum on the growth performance of pigs. Asian-Australasian journal of animal sciences. 2003. Vol. 16(9). P. 1360–1363. Doi: https://doi.org/10.5713/ajas.2003.1360.
  105. Wu J., Zhang Z., Yan J. An initial study on effect of adding rare earth element on productivity of egg laying breeder hens. NingXia Science and Technology of Farming and Forestry. 1994. Vol. 4. P. 36–38. Doi:https://doi.org/ 10.12720/jomb.4.3.239–243.
  106. Biogenic nanoselenium particles activate Nrf2-ARE pathway by phosphorylating p38, ERK1/2, and AKT on IPEC-J2 cells / Xiao X., et al. Journal of cellular physiology. 2019. Vol. 234(7). P. 11227–11234. Doi:https://doi.org/ 10.1002/jcp.27773
  107. Biogenic synthesis of novel functionalized selenium nanoparticles by Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by enterotoxigenic Escherichia coli K88 / Xu C., et al. Frontiers in microbiology. 2018. Vol. 9. 1129 p. Doi:https://doi.org/10.3389 / fmicb.2018.01129
  108. Tang H., Liu J.H., Wang H., Liu Y. Evaluation of the adjuvant effect of silver nanoparticles both in vitro and in vivo / Xu Y., et al. Toxicology letters. 2013. Vol. 219(1). P. 42–48. Doi:https://doi.org/10.1016/j.toxlet.2013.02.010.
  109. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers / Zhao C.Y., et al. Biological trace element research. 2014. Vol. 160(3). P. 361–367. Doi:https://doi.org/10.1007/s12011-014-0052-2.
  110. Zhou X., Wang Y. Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poultry Science. 2011. Vol. 90(3). P. 680–686. Doi:https://doi.org/10.3382/ps.2010-00977.
  111. Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment / Zhu M.T., et al. Toxicological Sciences. 2008. Vol. 107(2). P. 342–351. Doi:https://doi.org/10.1093/toxsci/kfn245.
ДолученняРозмір
PDF icon tsekhmistrenko_2_2019.pdf361.77 КБ