Ви є тут

Біологічні методи синтезу наночастинок селену, їх характеристики та властивості

Нанотехнології впливають на кожну сферу життя, змінюють підходи у відновленні навколишнього середовища, впроваджують нові методи аналізу захворювань та профілактики, лікування, доставки ліків та генної терапії, впливають на забезпечення екологічно сприятливих альтернативних джерел енергії, підвищують урожайність сільськогосподарських культур та продуктивність тварин і птиці. Розглянуто фізичні, хімічні, біологічні методи синтезу наночастинок, селену зокрема, їх властивості та чинники, що беруть участь у відновленні йонів металів до наночастинок. Розглянуто обмеження синтезу наночастинок, притаманні біологічному методу (ідентифікація та виділення біоактивного фрагмента, відповідального за біомінералізацію йонів металів, аналіз способів розроблення окремих наночастинок), та чинники, що сприяють інтенсифікації виробництва наночастинок (оптимізація рН, температури, тривалості контакту, ступеня змішування, концентрації солі та зміни загального заряду функціональних органічних молекул на клітинній стінці). Доведено, що ці чинники ще під час синтезу впливають на розмір, морфологію, склад наночасточок та їх ефективність. Підсумовано модель зеленого синтезу з використанням фізико-хімічних засобів та їх біомедичні застосування. Зазначено організми, що використовуються для синтезу NPs – наземні та морські бактерії, бактеріальні позаклітинні полімерні речовини у вигляді біоредуктантів, гриби, дріжджі, водорості, віруси, мікроорганізми. Описано біохімічні способи боротьби мікроорганізмів із токсичністю металів під час синтезу нанопродукції та чинники, що обумовлюють токсичність металів, перетворюваних на наночастинки (розмір, форма, покривальний агент, щільність наночастинок та тип патогена). Доведено біологічне значення селену та особливості його впливу на організм у нанорозмірній шкалі. Ключові слова: нанотехнології, наноселен, бактерії, зелений синтез, ферменти.

  1. Abbas H., Abou Baker D. Biological Evaluation of Selenium Nanoparticles biosynthesized by Fusarium semitectum as antimicrobial and anticancer agents. Egyptian Journal of Chemistry. 2020. 63(4). P. 18–19. Doi: https://doi. org/10.21608/ejchem.2019.15618.1945
  2. Combined mechanochemical/thermal annealing approach for the synthesis of Co 9 Se 8 with potential optical properties / Achimovičová M. et al. Applied Physics A. 2019. 125(1). 8 p. Doi:https://doi.org/10.1007/s00339-018-2305-y
  3. Adelere I. A., Lateef A. A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnology Reviews. 2016. 5(6). P. 567–587. Doi:https://doi.org/10.1515/ntrev-2016-0024
  4. Renewable energy harvesting with the application of nanotechnology: A review / M. H. Ahmadi et al. International Journal of Energy Research. 2019. 43(4). P. 1387–1410. Doi:https://doi.org/10.1002/er.4282
  5. Synthesis and characterization of nano selenium using plant biomolecules and their potential applications / H. Alam et al. Bio Nano Science. 2019. 9(1). P. 96–104. Doi:https:// doi.org/10.1007/s12668-018-0569-5
  6. Enhanced anti-tumor efficacy and reduced cardiotoxicity of doxorubicin delivered in a novel plant virus nanoparticle / E. Alemzadeh et al. Colloids and Surfaces B: Biointerfaces. (2019). 174. P. 80–86. Doi:https://doi. org/10.1016/j.colsurfb.2018.11.008
  7. Degradation of diclofenac sodium using UV/biogenic selenium nanoparticles/H2O2: Optimization of process parameters / A. Ameri et al. Journal of Photochemistry and Photobiology A: Chemistry. 2020. Vol. 392. 112382. Doi:https://doi.org/10.1016/j.jphotochem.2020.112382
  8. Anchana R. S., Arivarasu L., Rajeshkumar S. Green synthesis of garlic oil-mediated selenium nanoparticles and its antimicrobial and cytotoxic activity. Drug Invention Today. 2020. 14(2).
  9. Banerjee A., Gupta P., Nigam V., Bandopadhyay R. Bacterial exopolysaccharides from extreme marine habitat of Southern Ocean: Production and partial characterization. Gayana. 2019. 83(2). P. 126–134. Doi:https://doi. org/10.4067/S0717-65382019000200126
  10. Effects of different dietary selenium sources including probiotics mixture on growth performance, feed utilization and serum biochemical profile of quails / V. Bityutskyy et al. In Modern Development Paths of Agricultural Production Springer. Cham. 2019. P. 623–632. Doi: https://doi.org/10.1007/978-3-030-14918-5_61
  11. Cardarelli N. F. Tin as a vital nutrient: implications in cancer prophylaxis and other physiological processes. CRC press. 2019. Doi:https://doi.org/10.1201/9780429280511
  12. Chandra H., Kumari P., Bontempi E., Yadav S. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology. 2020. P. 1015– 1018. Doi:https://doi.org/10.1016/j.bcab.2020.101518
  13. Cruz L.Y., Wang D., Liu J. Biosynthesis of selenium nanoparticles, characterization and X-ray induced radiotherapy for the treatment of lung cancer with interstitial lung disease. Journal of Photochemistry and Photobiology B: Biology. 2019. 191. P. 123–127. Doi:https://doi. org/10.1016/j.jphotobiol.2018.12.008
  14. Daphedar A., Taranath T. C. Green synthesis of zinc nanoparticles using leaf extract of Albizia saman (Jacq.) Merr. and their effect on root meristems of Drimia indica (Roxb.) Jessop. Caryologia. 2018. 71(2). P. 93–102. Doi:https://doi. org/10.1080/00087114.2018.1437980
  15. Decho A.W., Gutierrez T. Microbial extracellular polymeric substances (EPSs) in ocean systems. Frontiers in microbiology. 2017. 8. 922 p. Doi:https://doi.org/10.3389/ fmicb.2017.00922
  16. Elahian F., Reiisi S., Shahidi A., Mirzaei S.A. High-throughput bioaccumulation, biotransformation, and production of silver and selenium nanoparticles using genetically engineered Pichia pastoris. Nanomedicine: Nanotechnology. Biology and Medicine. 2017. 13(3). P. 853–861. Doi:https://doi.org/10.1016/j.nano.2016.10.009
  17. Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells / A.I. El-Batal et al. International Journal of Biological Macromolecules. 2019. Doi:https://doi.org/10.1016/j. ijbiomac.2019.11.210
  18. Methyl selenol as a precursor in selenite reduction to Se/S species by methane-oxidizing bacteria / A.S. Eswayah et al. Applied and environmental microbiology. 2019. 85(22). Doi: https://doi.org/10.1128/AEM.01379-19
  19. Selenium Ameliorates AFB 1− Induced Excess Apoptosis in Chicken Splenocytes Through Death Receptor and Endoplasmic Reticulum Pathways / J. Fang et al. Biological trace element research. 2019. 187(1). P. 273–280. Doi:https://doi.org/10.1007/s12011-018-1361-7
  20. Fardsadegh B., Jafarizadeh-Malmiri H. Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Processing and Synthesis. 2019. 8(1). P. 399– 407. Doi:https://doi.org/10.1515/gps-2019-0007
  21. Biosynthesis, characterization and antimicrobial activities assessment of fabricated selenium nanoparticles using Pelargonium zonale leaf extract / B. Fardsadegh et al. Green Processing and Synthesis. 2019. 8(1). P. 191-198. Doi:https://doi.org/10.1515/gps-2018-0060
  22. Association of selenoprotein and selenium pathway genotypes with risk of colorectal cancer and interaction with selenium status / V. Fedirko et al. Nutrients. 2019. 11(4). 935 p. Doi:https://doi.org/10.3390/nu11040935
  23. Fenech, M. (2020). The Role of Nutrition in DNA Replication, DNA Damage Prevention and DNA Repair. In Principles of Nutrigenetics and Nutrigenomics (pp. 27-32). Academic Press. Doi:https://doi.org/10.1016/B978-0-12- 804572-5.00004-5
  24. Fernandes A.P.N. Living capacitors: functional characterization of a novel cytochrome acting as a nanowire. 2019. URL:http://hdl.handle.net/10362/91579
  25. Bacillus safensis JG-B5T affects the fate of selenium by extracellular production of colloidally less stable selenium nanoparticles / S. Fischer et al. Journal of hazardous materials. 2020. 384. 121146. Doi:https://doi.org/10.1016/j. jhazmat.2019.121146
  26. Gahlawat G., Choudhury A. R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC advances. 2019. 9(23). P. 12944-12967. Doi:https://doi.org/ 10.1039/C8RA10483B
  27. Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide / X. Gao et al. International Journal of Biological Macromolecules. (2020). 152. P. 605–615. Doi:https://doi.org/10.1016/j. ijbiomac.2020.02.199
  28. Prokaryotic and Eukaryotic Microbes: Potential Tools for Detoxification and Bioavailability of Metalloids / N. Garg et al. Metalloids in Plants: Advances and Future Prospects. 2020. P. 149–183. Doi:https://doi. org/10.1002/9781119487210.ch9
  29. Habibi G., Aleyasin Y. Green synthesis of Se nanoparticles and its effect on salt tolerance of barley plants. Int. J. Nano Dimens. 2020. 11(2). P. 145–157.
  30. Subacute oral toxicity investigation of selenium nanoparticles and selenite in rats / N. Hadrup et al. Drug and chemical toxicology. 2019. 42(1). P. 76–83. Doi:https://doi. org/10.1080/01480545.2018.1491589
  31. Hao N., Li L., Tang F. Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. International Materials Reviews. 2017. 62(2). P. 57–77. Doi:https://doi.org/10.1080/0950660 8.2016.1190118
  32. Chiral plasmonics / M. Hentschel et al. Science advances. 2017. 3(5). e1602735. Doi:https://doi.org/10.1126/ sciadv.1602735
  33. Huang Y., Ren J., Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chemical reviews. 2019. 119(6). P. 4357–4412. Doi:https:// doi.org/10.1021/acs.chemrev.8b00672
  34. A Short Review on Role of Nanotechnology in Daily Life / T. Iqbal et al. Research & Reviews: Journal of Computational Biology. 2020. 8(3). P. 24–33. URL:http:// medicaljournals.stmjournals.in/index.php/RRJoCB/article/ view/1833activity. Drug Invention Today. 2020. 14(2).
  35. Iravani S., Varma R.S. Bacteria in Heavy Metal Remediation and Nanoparticle Biosynthesis. ACS Sustainable Chemistry & Engineering. 2020. 8(14). P. 5395–5409. Doi:https://doi.org/10.1021/acssuschemeng.0c00292
  36. Kamali M., Costa M.E.V., Otero-Irurueta G., Capela I. Ultrasonic irradiation as a green production route for coupling crystallinity and high specific surface area in iron nanomaterials. Journal of cleaner production. 2019. 211. P. 185–197. Doi:https://doi.org/10.1016/j.jclepro.2018.11.127
  37. Biogenic selenium nanoparticles target chronic toxoplasmosis with minimal cytotoxicity in a mouse model / A. Keyhani et al. Journal of Medical Microbiology. 2020. 69(1). P. 104–110. Doi:https://doi.org/10.1099/jmm.0.001111
  38. Kim H.W., Hong S.H., Choi H. Effect of Nitrate and Perchlorate on Selenate Reductionina Sequencing Batch Reactor. Processes. 2020. 8(3). 344 p. Doi:https://doi. org/10.3390/pr8030344
  39. Development of Lactobacillus kimchicus DCY51Tmediated gold nanoparticles for delivery of ginsenoside compound K: in vitro photothermal effects and apoptosis detection in cancer cells / Y.J. Kim et al. Artificial cells, nanomedicine, and biotechnology. 2019. 47(1). P. 30–44. Doi:https://doi.org/10.1080/21691401.2018.1541900
  40. Plant Extract Assisted Eco-benevolent Synthesis of Selenium Nanoparticles-A Review on Plant Parts Involved, Characterization and Their Recent Applications / P. Korde et al. Journal of Chemical Reviews. 2020. P. 157–168.
  41. Kurmi B.D., Patel P., Paliwal R., Paliwal S.R. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. Journal of Drug Delivery Science and Technology. 2020. 101682. Doi:https://doi.org/10.1016/j.jddst.2020.101682
  42. Liang S. X. T., Wong L. S., Dhanapal A. C. T. A., Djearamane S. Toxicity of Metals and Metallic Nanoparticles on Nutritional Properties of Microalgae. Water, Air, & Soil Pollution. 2020. 231(2). 52 p. Doi:https://doi.org/10.1007/ s11270-020-4413-5
  43. Effect of selenium nanoparticles against abnormal fatty acid metabolism induced by hexavalent chromium in chicken’s liver / M. Luo et al. Environmental Science and Pollution Research. 2019. 26(21). P. 21828–21834. Doi:https://doi.org/10.1007/s11356-019-05397-3
  44. Majeed M.I., Bhatti H.N., Nawaz H., Kashif M. Nanobiotechnology: Applications of nanomaterials in biological research. Integrating green chemistry and sustainable engineering. 2019. P. 581–615.
  45. Selenium oxyanion bioconcentration in natural freshwater periphyton / B. Markwart et al. Ecotoxicology and environmental safety. 2019. 180. P. 693–704. Doi:https:// doi.org/10.1016/j.ecoenv.2019.05.004
  46. McClements J., McClements D.J. Standardization of nanoparticle characterization: methods for testing properties, stability, and functionality of edible nanoparticles. Critical reviews in food science and nutrition. 2016. 56(8). P. 1334– 1362. Doi:https://doi.org/10.1080/10408398.2014.970267
  47. Mellinas C., Jiménez A., Garrigós M. D. C. Microwave-Assisted Green Synthesis and Antioxidant Activity of Selenium Nanoparticles Using Theobroma cacao L. Bean Shell Extract. Molecules. 2019. 24(22). 4048 p. Doi:https:// doi.org/10.3390/molecules24224048
  48. Menon S., KS S.D., Agarwal H., Shanmugam V. K. Efficacy of Biogenic Selenium Nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid and Interface Science Communications. 2019. 29. P. 1–8. Doi:https://doi.org/10.1016/j. colcom.2018.12.004
  49. Mohanta D., Ahmaruzzaman M. Addressing Nanotoxicity: Green Nanotechnology for a Sustainable Future. The ELSI Handbook of Nanotechnology: Risk, Safety, ELSI and Commercialization. 2020. P. 103–112. Doi:https://doi. org/10.1002/9781119592990.ch6
  50. Mosallam F. M., El-Sayyad G. S., Fathy R. M., El-Batal A. I. Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microbial pathogenesis. 2018. 122. P. 108–116. Doi:https:// doi.org/10.1016/j.micpath.2018.06.013
  51. Mukherjee S., Nethi S. K. Biological Synthesis of Nanoparticles Using Bacteria. In Nanotechnology for Agriculture. Springer, Singapore. 2019. P. 37–51.
  52. A rapid synthesis and antibacterial property of selenium nanoparticles using egg white lysozyme as a stabilizing agent / S. Muthu et al. SN Applied Sciences. 2019. 1(12). 1543 p. Doi:https://doi.org/10.1007/s42452-019-1509-x
  53. Mykhaylenko N.F., Zolotareva E. K. The effect of copper and selenium nanocarboxylates on biomass accumulation and photosynthetic energy transduction efficiency of the green algae Chlorella vulgaris. Nanoscale research letters. 2017. 12(1). 147 p. Doi:https://doi. org/10.1186/s11671-017-1914-2
  54. Co-administration of Selenium with Inorganic Mercury Alters the Disposition of Mercuric Ions in Rats / S.E. Orr et al. Biological trace element research. 2019. P. 1–9. Doi:https://doi.org/10.1007/s12011-019-01835-y
  55. Effect of biogenic selenium nanoparticles on ERG11 and CDR1 gene expression in both fluconazole-resistant andsusceptible Candida albicans isolates / N. Parsameher et al. Current medical mycology. 2017. 3(3). 16 p. Doi:https://doi. org/10.29252/cmm.3.3.16
  56. Pouri S., Motamedi H., Honary S., Kazeminezhad I. Biological synthesis of selenium nanoparticles and evaluation of their bioavailability. Brazilian Archives of Biology and Technology. 2017. 60 p. Doi:https://doi.org/10.1590/1678- 4324-2017160452
  57. Preedy V. R. Selenium: Chemistry, Analysis, Function and Effects. Royal Society of Chemistry. 2015.
  58. Rahman Z., Singh V.P. Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environmental Science and Pollution Research International. 2020. Doi:https://doi.org/10.1007/ s11356-020-08903-0
  59. Rajeshkumar S., Veena P., Santhiyaa R. V. Synthesis and Characterization of Selenium Nanoparticles Using Natural Resources and Its Applications. In Exploring the Realms of Nature for Nanosynthesis. Springer, Cham. 2018. P. 63– 79. Doi:https://doi.org/10.1007/978-3-319-99570-0_4
  60. Regulacio M. D., Yang D. P., Ye E. Toward greener methods of producing branched metal nanostructures. CrystEngComm. 2020. 22(3). P. 399-411.
  61. Rehan M., Alsohim A.S., El-Fadly G., Tisa L. S. Detoxification and reduction of selenite to elemental red selenium by Frankia. Antonie van Leeuwenhoek. 2019. 112(1). P. 127–139. Doi:https://doi.org/10.1007/s10482-018-1196-4
  62. Rentería V., Franco A. Metal Nanoparticles Dispersed in Epoxy Resin: Synthesis, Optical Properties and Applications. In Reviews in Plasmonics 2017. Springer, Cham. 2019. P. 191–228. Doi:https://doi.org/10.1007/978-3-030-18834-4_8
  63. Lipid Peroxidation In The Body Of Different Species Of Animals And Birds. – 3rd International Conference “Smart Bio”, 02-04 May 2019 / N. Rol et al. Kaunas, Lithuania. 159 p. URL:http://rep.btsau.edu.ua/handle/BNAU/4665
  64. Saadi A., Dalir-Naghadeh B., Asri-Rezaei S., Anassori E. Platelet Selenium Indices as Useful Diagnostic Surrogate for Assessment of Selenium Status in Lambs: an Experimental Comparative Study on the Efficacy of Sodium Selenite vs. Selenium Nanoparticles. Biological Trace Element Research. 2020. 194(2). P. 401–409. Doi:https://doi. org/10.1007/s12011-019-01784-6
  65. Sakamoto I. K., Maintiguer S. I., Varesche M.B. A. Phylogenetic characterization and quantification by Most Probable Number of the microbial communities of biomass from the Upflow Anaerobic Sludge Blanket Reactor under sulfidogenic conditions. Acta Scientiarum. Technology. 2019. 41. 39128 p. Doi:https://doi.org/10.4025/actascitechnol.v41i1.39128
  66. Salem S. S., Fouda A. Green synthesis of metallic nanoparticles and their prosective biotechnological applications: an overview. Biol Trace Elem Res. 2020. Doi:https://doi. org/10.1007/s12011-020-02138-3.
  67. Samsudin A. A., Dalia A. M., Loh T. C., Sazili A. Q. Influence of Bacterial Organic Selenium on Blood Parameters, Immune Response, Selenium Retention and Intestinal Morphology of Broiler Chickens. 2020. Doi:https:// doi.org/10.21203/rs.2.23476/v1
  68. Sardar M., Mazumder J.A. Biomolecules assisted synthesis of metal nanoparticles. In Environmental Nanotechnology Springer, Cham. 2019. P. 1–23. Doi:https:// doi.org/10.1007/978-3-319-98708-8_1
  69. Applications of nanotechnology in plant growth and crop protection: a review / Y. Shang et al. Molecules. 2019. 24(14). 2558 p. Doi:https://doi.org/10.3390/ molecules24142558
  70. Effects of selenium on the proliferation and apoptosis of sheep spermatogonial stem cells in vitro / L. Shi et al. Animal Reproduction Science. 2020. 106330. Doi:https://doi.org/10.1016/j.anireprosci.2020.106330
  71. Shoeibi S., Mashreghi M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. Journal of Trace Elements in Medicine and Biology. 2017. 39. P. 135-139. Doi:https://doi. org/10.1016/j.jtemb.2016.09.003
  72. Shukla A.K., Iravani S. Green synthesis, characterization and applications of nanoparticles. Elsevier. 2018. Doi:https://doi.org/10.1016/C2017-0-02526-0
  73. Singh P., Kim Y.J., Zhang D., Yang, D. C. Biological synthesis of nanoparticles from plants and microorganisms. Trends in biotechnology. 2016. 34(7). P. 588–599. Doi:https://doi.org/10.1016/j.tibtech.2016.02.006
  74. Singh S. K., Kasana R. C., Yadav R. S., Pathak R. Current Status of Biologically Produced Nanoparticles in Agriculture. In Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. 2020. P. 393–406. Doi:https://doi.org/10.1007/978-981-15-2985-6_21
  75. Sinharoy A., Saikia S., Pakshirajan K. Biological removal of selenite from waste water and recovery as selenium nanoparticles using inverse fluidized bed bioreactor. Journal of Water Process Engineering. 2019. Vol. 32. 100988. Doi:https://doi.org/10.1016/j.jwpe.2019.100988
  76. Microbes for Bioremediation of Heavy Metals. In Microbial Interventions in Agriculture and Environment Springer / R. Soni et al. Singapore. 2019. P. 129–141. Doi:https://doi.org/10.1007/978-981-32-9084-6_6
  77. Construction of arabinogalactans/selenium nanoparticles composites for enhancement of the antitumor activity / S. Tang et al. International journal of biological macromolecules. 2019. 128. P. 444–451. Doi:https://doi. org/10.1016/j.ijbiomac.2019.01.152
  78. Tendenedzai J. T., Brink H. G. The effect of nitrogen on the reduction of selenite to elemental selenium by Pseudomonas stutzeri NT-I. CHEMICAL ENGINEERING. 2019. 74 p. Doi: https://doi.org/10.3303/ CET1974089
  79. Effects of selenium compounds and toxicant actionon oxidative biomarkers in quails / S.I. Tsekhmistrenko et al. Ukrainian Journal of Ecology. 2020. 10(2). P. 232–239. Doi: https://doi.org/10.15421/2020_89
  80. BityutskyV.S., SpyvacM.Y., TsekhmistrenkoS.I., ShaduraU.M. Perspectives of cerium nanoparticles use in agriculture / О.S. Tsekhmistrenko et al. The Animal Biology. 2017. Vol. 19. № 3. Львів, 2017. P. 9–18. URL:http://rep. btsau.edu.ua/handle/BNAU/1300
  81. Tsekhmistrenko, O., & Tsekhmistrenko, S. Lipid peroxidation in the quails kidney under Cadmium load and Sel-Plex influence. Технологія виробництва та переробки продукції тваринництва: Зб. наук. праць. 2015. Vol. 1 (116). Bila Tserkva. P. 203–207. URL:http://rep.btsau.edu.ua/ handle/BNAU/931
  82. Bacterial synthesis of nanoparticles: A green approach / S. I. Tsekhmistrenko et al. Biosystems Diversity. 2020. 28(1). P. 9–17. Doi: https://doi.org/10.15421/012002
  83. Tsekhmistrenko S., Bityutskii V., Tsekhmistrenko O. Markers of oxidative stress in the blood of quails under the influence of selenium nanoparticles. 2020. URL:http:// rep.btsau.edu.ua/handle/BNAU/4763
  84. Enzyme-like activity of nanomaterials / S.I. Tsekhmistrenko et al. Regulatory Mechanismsin Biosystems. 2018. 9(3). Р. 469–476. Doi:https://doi. org/10.15421/021870
  85. Evaluation of effects of selenium nanoparticles on Bacillus subtilis / N.O. Tymoshok et al. Regulatory Mechanisms in Biosystems. 2019. 10(4). P. 544–552. Doi:https:// doi.org/10.15421/021980
  86. Vaishnavi S., Thamaraiselvi C., Vasanthy M. Efficiency of Indigenous Microorganisms in Bioremediation of Tannery Effluent. In Waste Water Recycling and Management Springer, Singapore. 2019. P. 151–168. Doi:https://doi. org/10.1007/978-981-13-2619-6_13
  87. Vaseghi Z., Nematollahzadeh A., Tavakoli O. Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: a review. Reviews in Chemical Engineering. 2018. 34(4). P. 529–559. Doi:https://doi. org/10.1515/revce-2017-0005
  88. Wadhwani S. A., Shedbalkar U. U., Singh R., Chopade B. A. Biogenic selenium nanoparticles: current status and future prospects. Applied microbiology and biotechnology. 2016. 100(6). P. 2555–2566. Doi:https://doi.org/10.1007/ s00253-016-7300-7
  89. Waghmare S. R., Mulla M. N., Marathe S. R., Sonawane K. D. Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech. 2015. 5(1). P. 33–38. Doi:https://doi.org/10.1007/s13205-014-0196-y
  90. Selenate reduction and selenium enrichment of tea by the endophytic Herbaspirillum sp. strain WT00C / X. Xu et al. Current microbiology. 2019. P. 1–14. Doi:https://doi. org/10.1007/s00284-019-01682-z
  91. Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L / H. Yin et al. Ecotoxicology and environmental safety. 2019. 169. P. 911–917. Doi:https://doi.org/10.1016/j.ecoenv.2018.11.080
  92. Adsorption of selenite onto Bacillus subtilis: the overlooked role of cell envelope sulfhydryl sites in the microbial conversion of Se (IV) / Q. Yu et al. Environmental science & technology. 2018. 52(18). P. 10400–10407. Doi:https://doi.org/10.1021/acs.est.8b02280
  93. Yumei L., Yamei L., Qiang L., Jie B. Rapid biosynthesis of silver nanoparticles based on flocculation and reduction of an exopolysaccharide from arthrobacter sp. B4: its antimicrobial activity and phytotoxicity. Journal of Nanomaterials. 2017. Doi:https://doi. org/10.1155/2017/9703614
  94. Two selenium tolerant Lysinibacillus sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions / J. Zhang et al. Journal of Environmental Sciences. 2019. 77. P. 238–249. Doi:https://doi.org/10.1016/j. jes.2018.08.002
  95. Selenium-doped calcium carbonate nanoparticles loaded with cisplatin enhance efficiency and reduce side effects / P. Zhao et al. International journal of pharmaceutics. 2019. 570 p. 118638. Doi:https://doi.org/10.1016/j.ijpharm.2019.118638
  96. Використання наночастинок металів та неметалів у птахівництві / О.С. Цехмістренко та ін. Технологія виробництва і переробки продукції тваринництва, № 2, 2019. Біла Церква, 2019. С. 113–130. URL:http://rep.btsau. edu.ua/handle/BNAU/3838
  97. Вплив Сел-плексу та кадмієвого навантаження на ліпопероксидацію / О.С. Цехмістренко та ін. Збірник наукових праць. Технологія виробництва і переробки продукції тваринництва. 2013. Вип. 9 (103). С. 16–19. URl:http://rep.btsau.edu.ua/handle/BNAU/957
  98. Цехмістренко О.С., Бітюцький В.С., Цехмістренко С.І. “Зелені” технології у синтезі наночастинок селену. Шляхи розвитку науки в сучасних кризових умовах: тези доп. I міжнародної науково-практичної інтернет-конференції. 28-29 травня 2020 року. Дніпро, 2020. Т. 2. С. 506–509. URL:http://193.138.93.8/bitstream/BNAU/4823/1/ Zeleni_tekhnolohii.pdf
  99. Біоміметична та антиоксидантна активність наносполук діоксиду церію / О.С. Цехмістренко та ін. Світ медицини та біології, 2018, № 1 (63). Полтава, 2018. С. 196–201. Doi:https://doi.org/10.267254 / 2079-8334-2018-1- 63-196-201
ДолученняРозмір
PDF icon tsehmistrenko_2_2020.pdf752.45 КБ