Ви є тут

Синтез наночастинок селену з використанням “зелених” технологій

Традиційні добавки селену зазвичай є високотоксичними та мають низький рівень абсорбції, тому розроблення систем, що використовують сполуки селену як переносники для підвищення біодоступності елемента та контролюють його вивільнення в організмі, є актуальним. Наноразмірний селен цікавий як кормова добавка, особливо за селенодефіцитних станів, а також як терапевтичний засіб без значної побічної дії. Вказано про нанотехнологічні застосування, вивчення ефективного способу введення та узагальнення знань про наночастинки селену, їх біологічний вплив та переваги, механізми абсорбції. Розглянуто нанотехнічні модифікації наночастинок, застосування SeNPs як кормової добавки, ефекти, які вони здійснюють на організм, а також різні методи синтезу SeNPs. У дослідженні закцентовано увагу на проблемах традиційних форм кормового селену та перевагах SeNPs. Висвітлено механізми проходження наночастинок через слизову оболонку кишечнику та особливості їх перорального застосування. Наведені матеріали доводять, що важливістю Селену є регуляція у складі селенопротеїнів багатьох фізіологічних процесів, вплив на продуктивні та репродуктивні властивості. Корекція його вмісту у раціоні запобігає селенодефіцитним захворюванням, а селен у наноформі є найдоцільнішим для застосування через високу біодоступність та низьку токсичність, що є особливо актуальним для жуйних тварин. Подальші доклінічні та клінічні дослідження in vitro та in vivo дадуть змогу розробити нові системи нанопрепаратів для транспорту в організмі селену, змінювати фізико-хімічні властивості SeNPs, збільшувати їх стабільність у харчотравному тракті для контрольованого вивільнення елемента для забезпечення дієтичного та терапевтичного потенціалу.

Ключові слова: наночастинки, “зелений” синтез, Селен, окиснювальний стрес, застосування наночастинок.

  1. Agüero L., Zaldivar-Silva D., Peña L., Dias M. L. Alginate microparticles as oral colon drug delivery device: A review. Carbohydrate polymers. 2017. 168. P. 32–43. DOI:10.1016/j.carbpol.2017.03.033
  2. Alla D. Selenium-enriched bacterial protein as a source of organic selenium in broiler chickens. 2018. URL:http://psasir.upm.edu.my/id/eprint/76179/1/FP%202018%2078%20IR.pdf
  3. Anık Ü., Timur S., Dursun Z. Recent pros and cons of nanomaterials in drug delivery systems. International Journal of Polymeric Materials and Polymeric Biomaterials. 2019. P. 1–11. DOI:10.1080/00914037.2019.1655753
  4. Measurement of aortic cell fluid-phase pinocytosis in vivo by flow cytometry/J. J. Anzinger et al. Journal of vascular research. 2017. 54(4). P. 195– 199. DOI:10.1159/000475934
  5. Athmouni K., Mkadmini Hammi K., El Feki A., Ayadi H. Development of catechin–phospholipid complex to enhance the bioavailability and modulatory potential against cadmium-induced oxidative stress in rats liver. Archives of Physiology and Biochemistry. 2020. 126(1). P. 82–88. DOI:10.1080/13813455.2018.1493608
  6. Atteia H. H., Arafa M. H., Prabahar K. Selenium nanoparticles prevents lead acetate-induced hypothyroidism and oxidative damage of thyroid tissues in male rats through modulation of selenoenzymes and suppression of miR-224. Biomedicine & Pharmacotherap. 2018. 99. P. 486–491. DOI:10.1016/j.biopha.2018.01.083
  7. Avenatti R. C., McKeever K. H., Horohov D. W., Malinowski K. Effects of age and exercise on inflammatory cytokines, HSP70 and HSP90 gene expression and protein content in Standardbred horses. Comparative Exercise Physiology. 2018. 14(1). P. 27–46. DOI:10.3920/CEP170020
  8. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres/K. Bai et al. International journal of nanomedicine. 2017. 12. 4527 p. DOI:10.2147/IJN.S129958
  9. Bao P., Li G. X., He Y. Q., Ren H. Y. Selenium nanovirus and its cytotoxicity in selenite-exposed higher living organisms. Biochemistry and biophysics reports. 2020. 21. 100733. DOI:10.1016/j.bbrep.2020.100733
  10. The role of immune system in thalassemia major: a narrative review/A. Bazi et al. Journal of Pediatrics Review. 2017. URL:http://eprints.skums.ac.ir/6230/
  11. Belyaeva E. A. Toxic Effects of Zn2+ and Selenite on Rat Ascites Hepatoma AS-30D Cells and Isolated Liver Mitochondria: Molecular Mechanism (s) of the Metal/Metalloid Action. 2019. URL:https://avidscience.com/wp-content/uploads/2017/10/
  12. Bisht S., Faiq M., Tolahunase M., Dada R. Oxidative stress and male infertility. Nature Reviews Urology. 2017. 14(8). 470 p. URL:https://www.nature.com/articles/nrurol.2017.69
  13. Effects of Different Dietary Selenium Sources Including Probiotics Mixture on Growth Performance, Feed Utilization and Serum Biochemical Profile of Quails/V. Bityutskyy et al. In Modern Development Paths of Agricultural Production. Springer, Cham. 2019. P. 623–632. DOI:10.1007/978-3-030-14918-5_61
  14. Bribiesca J. E. R., Casas R. L., Monterrosa R. G. C., Pérez A. R. Supplementing selenium and zinc nanoparticles in ruminants for improving their bioavailability meat. In Nutrient Delivery. Academic Press. 2017. P. 713–747. DOI:10.1016/B978-0-12-804304-2.00019-6
  15. Cancer‐targeted selenium nanoparticles sensitize Cancer cells to continuous γ radiation to achieve synergetic chemo‐radiotherapy/L. Chan et al. Chemistry–An Asian Journal. 2017. 12(23). P. 3053–3060. DOI:10.1002/asia.201701227
  16. Effects of different levels of dietary hydroxy-analogue of selenomethionine on growth performance, selenium deposition and antioxidant status of weaned piglets/Y. Chao et al. Archives of animal nutrition. 2019. 73(5). P. 374–383. DOI:10.1080/1745039X.2019.1641368
  17. Vitamin C and E supplementation does not affect heat shock proteins or endogenous antioxidants in trained skeletal muscles during 12 weeks of strength training/K.T. Cumming et al. BMC Nutrition. 2017. 3(1). 70 p. DOI:10.1186/s40795-017-0185-8
  18. Elahian F., Reiisi S., Shahidi A., Mirzaei S. A. High-throughput bioaccumulation, biotransformation, and production of silver and selenium nanoparticles using genetically engineered Pichia pastoris. Nanomedicine: Nanotechnology, Biology and Medicine. 2017. 13(3). P. 853–861. DOI:10.1016/j.nano.2016.10.009
  19. Effect simultaneous delivery with P-glycoprotein inhibitor and nanoparticle administration of doxorubicin on cellular uptake and in vitro anticancer activity/O. Esim et al. Saudi Pharmaceutical Journal. 2020. DOI:10.1016/j.jsps.2020.02.008
  20. Natural selenium particles from Staphylococcus carnosus: Hazards or particles with particular promise?/E. C. Estevam et al. Journal of hazardous materials. 2017. 324. P. 22–30. DOI:10.1016/j.jhazmat.2016.02.001
  21. Selenium nanoparticles synthesized in aqueous extract of Allium sativum perturbs the structural integrity of Calf thymus DNA through intercalation and groove binding/ P.B. Ezhuthupurakkal et al. Materials Science and Engineering: C, 2017. 74. P. 597–608. DOI:10.1016/j.msec.2017.02.003
  22. Biosynthesis of selenium nanoparticles by Azoarcus sp/ H. Fernández-Llamosas et al. CIB. Microbial cell factories. 2016. 15(1). 109 p. URL:https://microdialcellfactories.Biomedcentral.com/articles/10.1186/s12934-016-0510-y
  23. Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide/X. Gao et al. International Journal of Biological Macromolecules. 2020. 152. P. 605–615. DOI:10.1016/j.ijbiomac.2020.02.199
  24. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids/G. Guisbiers et al. Nanomedicine: Nanotechnology, Biology and Medicine. 2017. 13(3). P. 1095–1103. DOI:10.1016/j.nano.2016.10.011
  25. Subacute oral toxicity investigation of selenium nanoparticles and selenite in rats/N. Hadrup et al. Drug and chemical toxicology. 2019. 42(1). P. 76–83. DOI:10.1080/01480545.2018.1491589
  26. Hosseini S., Mamouei M. Assessment of Glutathione peroxidase activity in blood plasma and semen Following Nutrition by Nano-selenium supplementation in Khuzestan Arabian rams. 2019. DOI:10.22055/ivj.2019.75044.1869
  27. Joselin J. M., Kumar V. G., Suganya K. S., Govindaraju K. Biological Synthesis of Gold Nanospheres and Nanotriangles. Micro and Nanosystems. 2018. 10(1). P. 35–39. DOI:10.2174/1876402910666180430142436
  28. Effects of sodium selenite, L-selenomethionine, and selenium nanoparticles during late pregnancy on selenium, zinc, copper, and iron concentrations in Khalkhali Goats and their kids/R. Kachuee et al. Biological trace element research. 2019. 191(2). P. 389–402. DOI:10.1007/s12011-018-1618-1
  29. Thermally Stable Ionic Liquid-Based Microemulsions for High-Temperature Stabilization of Lysozyme at Nanointerfaces/M. Kaur et al. Langmuir, 2019. 35(11). P. 4085–4093. DOI:10.1021/acs.langmuir.9b00106
  30. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum/N. S. Khoei et al. New biotechnology. 2017. 34. P. 1–11. DOI:10.1016/j.nbt.2016.10.002
  31. Therapeutic applications of selenium nanoparticles/A. Khurana et al. Biomedicine & Pharmacotherapy. 2019. 111. P. 802–812. DOI:10.1016/j.biopha.2018.12.146
  32. Seo J. M., Kim G. W., Lee S. Y., Park T. J. In vivo synthesis of europium selenide nanoparticles and related cytotoxicity evaluation of human cells/E. B. Kim et al. Enzyme and microbial technology. 2016. 95. P. 201–208. DOI:10.1016/j.enz mictec.2016.08.012
  33. Kora A. J., Rastogi L. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: an approach for conversion of selenite. Journal of environmental management. 2016. 181. P. 231–236. DOI:10.1016/j.jenv man.2016.06.029
  34. Kora A. J. Gram+ ve bacterium Staphylococcus aureus: a potential source for the green biosynthesis of monodispersed, smaller selenium nanoparticles. Micro & Nano Letters. 2018. 13(8). P. 1155–1158. DOI:10.1049/mnl.2017.0822
  35. Kora A. J., Rastogi L. Bacteriogenic synthesis of selenium nanoparticles by Escherichia coli ATCC 35218 and its structural characterisation. IET nanobiotechnology. 2016. 11(2). P. 179–184. DOI:10.1049/ietnbt.2016.0011
  36. Kumar K. V. Green Chemistry Approach of Metal Nanoparticles Synthesis. 2018. URL:http://www.ijrti.org/papers/IJRTI1805006.pdf
  37. Synergistic antifungal effect of chitosan-stabilized selenium nanoparticles synthesized by pulsed laser ablation in liquids against Candida albicans biofilms/H. H. Lara et al. International journal of nanomedicine. 2018. 13. 2697 p. DOI:10.2147/IJN.S151285
  38. Lee M. R., Fleming H. R., Hodgson C., Davies D. Selenium enrichment of laboratory scale silos using lactic acid bacteria inoculum. 2020. URL:https://uknowledge.uky.edu/igc/23/2-1-2/14/
  39. Inhibitory activity of selenium nanoparticles functionalized with oseltamivir on H1N1 influenza virus/ Y. Li et al. International journal of nanomedicine. 2017. 12. P. 5733–5743. DOI:10.2147/IJN.S140939
  40. Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells/Y. Li et al. International journal of nanomedicine. 2016. 11. 3065 p. DOI:10.2147/IJN.S109822
  41. Laser-ablative synthesis of aggregation-induced enhanced emission luminophore dyes in aqueous solutions/C. K. Lim et al. In Synthesis and Photonics of Nanoscale Materials XVI (Vol. 10907, p. 109070U). International Society for Optics and Photonics. 2019. DOI:10.1117/12.2513821
  42. Delivery of sesamol using polyethylene-glycol-functionalized selenium nanoparticles in human liver cells in culture/F. Liu et al. Journal of agricultural and food chemistry. 2019. 67(10). P. 2991–2998. URL:https://pubs.acs.org/doi/abs/10.1021/acs.jafc.8b06924
  43. Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum/Y. Liu et al. International journal of biological macromolecules. 2018. 114. P. 632–639. DOI:10.1016/j.ijbiomac.2018.03.161
  44. Luesakul U., Puthong S., Neamati N., Muangsin N. pH-responsive selenium nanoparticles stabilized by folate-chitosan delivering doxorubicin for overcoming drug-resistant cancer cells. Carbohydrate polymers. 2018. 181. P. 841–850. DOI:10.1016/j.carbpol.2017.11.068
  45. Maiyo, F., Singh, M. Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine. 2017. 12(9). P. 1075–1089. DOI:10.2217/nnm-2017-0024
  46. A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis/ J. Mal et al. Nanotoxicology. 2017. 11(1). P. 87–97. DOI:10.1080/17435390.2016.1275866
  47. Mulliniks J. T., Adams D. C. Evaluation of Level of Milk Potential on Nutrient Balance in 2-and 4-Year-Old May-Calving Range Cows Grazing Sandhills Upland Range. 2020. URL:https://digitalcommons.unl.edu/animalscinbcr/1063/
  48. Food-grade nanoemulsions and their fabrication methods to increase shelf life/M. Nasiri et al. Food and Health. 2019. 2(2). P. 37–45. URL:http://fh.srbiau.ac.ir/article15200f3ddc1a73391a80be6f 4b1b-6b535165e.pdf
  49. Peyer’s Patch: Targeted Drug Delivery for Therapeutics Benefits/R. P. Patel et al. In Novel Drug Delivery Technologies Springer, Singapore. 2019. P. 121–149. DOI:10.1007/978-981-13-3642-3_5
  50. Antimicrobial activity of biogenically produced spherical Se‐nanomaterials embedded in organic material against Pseudomonas aeruginosa and Staphylococcus aureus strains on hydroxyapatite‐coated surfaces/E. Piacenza et al. Microbial biotechnology. 2017. 10(4). P. 804–818. DOI:10.1111/1751-7915.12700
  51. Rajeshkumar S., Ganesh L., Santhoshkumar J. Selenium Nanoparticles as Therapeutic Agents in Neurodegenerative Diseases. In Nanobiotechnology in Neurodegenerative Diseases Springer, Cham. 2019. P. 209–224. DOI:10.1007/978-3-030-30930-5_8
  52. Rajpoot K., Jain S. K. Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: A dual-targeted approach. International Journal of Biological Macromolecules. 2020. 151. P. 830–844. DOI:10.1016/j.ijbiomac.2020.02.132
  53. Ramos D. L., Rech V. C. The interaction between physical exercise and nanoscience: a systematic review. Disciplinarum Scientia| Naturais e Tecnológicas. 2020. 20(3). P. 313–323. URL:https://periodicos.ufn.edu.br/index.php/discip linarumNT/article/view/2978
  54. Ramya S., Shanmugasundaram T., Balagurunathan R. Actinobacterial enzyme mediated synthesis of selenium nanoparticles for antibacterial, mosquito larvicidal and anthelminthic applications. Particulate Science and Technology. 2020. 38(1). P. 63–72. DOI:10.1080/02726351.2018.1508098
  55. Saadi A., Dalir-Naghadeh B., Asri-Rezaei S., Anassori E. Platelet Selenium Indices as Useful Diagnostic Surrogate for Assessment of Selenium Status in Lambs: an Experimental Comparative Study on the Efficacy of Sodium Selenite vs. Selenium Nanoparticles. Biological Trace Element Research. 2020. 194(2). P. 401–409. DOI:10.1007/s12011-019-01784-6
  56. Saranya K., Kalaiyarasan M., Rajendran N. Selenium conversion coating on AZ31 Mg alloy: A solution for improved corrosion rate and enhanced bio-adaptability. Surface and Coatings Technology. 2019. 378. 124902. DOI:10.1016/j.surfcoat.2019.124902
  57. Modulation of intestinal transport and absorption of topotecan, a BCRP substrate, by various pharmaceutical excipients and their inhibitory mechanisms of BCRP transporter/K. Sawangrat et al. Journal of pharmaceutical sciences. 2019. 108(3). P. 1315–1325. DOI:10.1016/j.xphs.2018.10.043
  58. Biosynthesis and Physicochemical Characterization, and Cytotoxic Evaluation of Selenium Nanoparticles Produced by Streptomyces Lavendulae FSHJ9 Against MCF-7 Cell Line/M. Shakibaie et al. Journal of Rafsanjan University of Medical Sciences. 2018. 17(7). P. 625–638. URL:http://journal.rums.ac.ir/article-1-4075-en.html
  59. Assessment of toxicity of selenium and cadmium selenium quantum dots: A review/V. K. Sharma et al. Chemosphere. 2017. 188. P. 403–413. DOI:10.1016/j.chemosphere.2017.08.130
  60. Shoeibi S., Mashreghi M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. Journal of Trace Elements in Medicine and Biology. 2017. 39. P. 135–139. DOI:10.1016/j.jtemb.2016.09.003
  61. Singh V. K., Chaudhary S. S., Manat T. D., Singh R. R. Effect of supplementation of different yeast forms on rumen fermentation characteristics and microbial profile in postpartum Surti buffaloes. IJCS, 2019. 7(5). P. 189–193. Corpus ID:207820971
  62. Aerobic biogenesis of selenium nanoparticles by Enterobacter cloacae Z0206 as a consequence of fumarate reductase mediated selenite reduction/D. Song et al. Scientific reports. 2017. 7(1). P. 1–10. URL:https://www.nature.com/articles/s41598-017-03558-3
  63. Sonkusre P. Specificity of Biogenic Selenium Nanoparticles for Prostate Cancer Therapy With Reduced Risk of Toxicity: An in vitro and in vivo Study. Frontiers in Oncology. 2020. 9. 1541 p. DOI:10.3389/fonc.2019.01541
  64. Sonkusre P., Cameotra S. S. Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. Journal of nanobiotechnology. 2017. 15(1). 43 p. DOI:10. 1186/s12951-017-0276-3
  65. Sowndarya P., Ramkumar G., Shivakumar M. S. Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artificial cells, nanomedicine, and biotechnology. 2017. 45(8). P. 1490–1495. DOI:10.1080/ 21691401.2016.1252383
  66. Reduction of selenite to Se (0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil/Y. Tan et al. Microbial cell factories. 2016. 15(1). 157. DOI:10.1186/s12934-016-0554-z
  67. Perspectives of cerium nanoparticles use in agriculture/О.S. Tsekhmistrenko et al. The Animal Biology. Lviv, 2017. Vol. 19. no. 3. P. 9–18.
  68. Bacterial synthesis of nanoparticles: A green approach/S. I. Tsekhmistrenko et al. Biosystems Diversity. 2020. 28(1). P. 9–17. URL:https://ecology.dp.ua/index.php/ECO/article/view/1017
  69. Enzyme-like activity of nanomaterials/S. I. Tsekhmistrenko et al. Regulatory Mechanisms in Biosystems. 2018. 9(3). Р. 469–476. DOI:10.15421/021870
  70. Evaluation of effects of selenium nanoparticles on Bacillus subtilis/N. O. Tymoshok et al. Regulatory Mechanisms in Biosystems. 2019. 10(4). P. 544–552. DOI:10.15421/021980
  71. Fabrication and characterization of carboxymethyl chitosan and tea polyphenols coating on zein nanoparticles to encapsulate β-carotene by anti-solvent precipitation method/M. Wang et al. Food hydrocolloids. 2018. 77. P. 577–587. DOI:10.1016/j.foodhyd.2017.10.036
  72. White S. H., Warren L. K. Submaximal exercise training, more than dietary selenium supplementation, improves antioxidant status and ameliorates exercise-induced oxidative damage to skeletal muscle in young equine athletes. Journal of animal science. 2017. 95(2). P. 657–670. DOI:10.2527/jas.2016.1130
  73. Woo J., Lim W. Anticancer effect of selenium. The Ewha Medical Journal. 2017. 40(1). P. 17–21. DOI:10.12771/emj.2017.40.1.17
  74. Melatonin promotes secondary hair follicle development of early postnatal cashmere goat and improves cashmere quantity and quality by enhancing antioxidant capacity and suppressing apoptosis/C. H. Yang et al. Journal of pineal research. 2019. 67(1). e12569. DOI:10.1111/jpi.12569
  75. Poly-γ-glutamic acid/chitosan nanogel greatly enhances the efficacy and heterosubtypic cross-reactivity of H1N1 pandemic influenza vaccine/J. Yang et al. Scientific reports. 2017. 7. 44839. DOI:10.1038/srep44839
  76. Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials/ X. Yang et al. Journal of inorganic biochemistry. 2017. 167. P. 36–48. DOI:10.1016/j.jinorgbio.2016.11.023
  77. Yin J., Hou Y., Yin Y., Song X. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect. International journal of nanomedicine. 2017. 12. 8671 p. DOI:10.2147/IJN.S144615
  78. Zakharia Y., Bhattacharya A., Rustum Y. M. Selenium targets resistance biomarkers enhancing efficacy while reducing toxicity of anti-cancer drugs: Preclinical and clinical development. Oncotarget. 2018. 9(12). DOI:10.18632/oncotarget.24297
  79. Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization/H. Zhang et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019. 571. P. 9–16. DOI:10.1016/j.colsurfa.2019.02.070
  80. Synthesis and antioxidant properties of Lycium barbarum polysaccharides capped selenium nanoparticles using tea extract/W. Zhang et al. Artificial cells, nanomedicine, and biotechnology. 2018. 46(7). P. 1463–1470. DOI:10.1080/21691401.2017.1373657.
  81. Selenium uptake and assessment of the biochemical changes in Arthrospira (Spirulina) platensis biomass during the synthesis of selenium nanoparticles/I. Zinicovscaia et al. Canadian journal of microbiology. 2017. 63(1). P. 27–34. URL:https://www.nrcresearchpress.com/doi/full/10.1139/cjm-2016-0339
  82. Використання наночастинок металів та неметалів у птахівництві/О.С. Цехмістренко та ін. Технологія виробництва і переробки продукції тваринництва. 2019. (2). С. 113–130. URL:http://rep.btsau.edu.ua/handle/BNAU/3838
  83. Біоміметична та антиоксидантна активність наносполук діоксиду церію/О.С. Цехмістренко та ін. Світ медицини та біології. 2018. 1 (63). С. 196– 201. URL:http://rep.btsau.edu.ua/ handle/BNAU/1240
ДолученняРозмір
PDF icon tsekhmistrenko_1_2022.pdf1.12 МБ