Ви є тут
Вплив генотипових і фенотипових чинників на показники комфорту корів
Мета статті – узагальнення знань про вплив температурного стресу на здоров’я, продуктивність і рівень комфорту корів та обговорення стратегій управління, які б пом’якшили вплив цих чинників. Дослідження впливу погодних явищ на поведінкові та фізіологічні процеси посідає важливе місце в
розробленні високоефективних методів управління молочним скотарством. Чинники клімату і погоди набули важливого значення у системі взаємодії «організм-середовище». Одним із основних чинників підвищення показників комфортності умов утримання корів у приміщеннях різного типу, на вигульних майданчиках та на пасовищах є створення таких показників мікроклімату, котрі якнайкраще б відповідали біологічним потребам молочних корів залежно від пори року і продуктивності. Серед погодних чинників, що впливають на функціонування молочної худоби, найбільший вплив має температура навколишнього середовища (термонейтральною для організму
молочної худоби є температура в діапазоні від -5 до 25 °С). Через постійні обмінні процеси організм великої рогатої худоби дуже уразливий до дії температури навколишнього середовища. Особливо це відчувається у періоди тривалих низько- або високотемпературних навантажень. Порушення обмінних і терморегуляційних процесів прямо впливає на тривалість та характер поведінкових і фізіологічних реакцій та спричиняє стрес у тварин. Тривалий температурний стрес – причина коливання показників продуктивності, якісного складу молока та проблем з відтворенням і загалом значно впливає на рентабельність виробництва продукції. Для зниження впливу температурних стресів на організм молочних корів науковцями запропоновано стратегії управління у періоди високо- та низькотемпературного навантаження. Ці стратегії поділяються на генотипові: відбір термостійких особин різних порід та фенотипові: використання засобів регулювання мікроклімату та модернізація методів управління годівлею.
Ключові слова: корови, температурні стреси, комфорт, продуктивність, поведінка, варіанти утримання.
1. Weller J.I., Ezra E., Ron M. Invited review: A perspective on the future of genomic selection in dairy cattle. Journal of Dairy Science. 2017. Vol. 100 (11). P. 8633–8644 DOI:10.3168/jds.2017-12879
2. Genetic origin, admixture and population history of aurochs (Bosprimigenius) and primitive European cattle /M. Upadhyay et al. Heredity. 2017. Vol. 118. P. 169–176. DOI:10.1038/hdy.2016.7
3. Berman A. Invited review: are adaptations present to support dairy cattle productivity in warm climates? Journal of Dairy Science. 2011. Vol. 94 (5). P. 2147–2158. DOI:10.3168/jds.2010-3962
4. Morphological and genetic evidence for early Holocene cattle management in northeastern China / H. Zhang et al. Nature Communications. 2013. Vol. 4. e2755. DOI:10.1038/ncomms3755
5. The genetic prehistory of domesticated cattle from their origin to the spread across Europe / A. Scheu et al. BMC Genetics. 2015. Vol. 16. 54 p. DOI:10.1186/s12863-015-0203-2
6. WMO: WMO Statement on the state of the global climate in 2017, in: WMO-No.1212, Publications Board World Meteorological Organization (WMO), World Meteorological Organization,Geneva, Switzerland, 2018.
7. Heat stress risk in European dairy cattle husbandry under different climate change scenarios – uncertainties and potential impacts / S. Hempel et al. Earth System Dynamics. 2019. Vol. 10. P. 859–884. DOI:10.5194/esd-10-859-2019
8. Changing climate in Hungary and trends in the annual number of heat stress days / N. Solymosi et al. International Journal of Biometeorology. 2010. Vol. 54. P. 423–431. DOI:10.1007/s00484-009-0293-5
9. Novak P., Vokralova J., Broucek J. Effects of the stage and number of lactation on milk yield of dairy cows kept in open barn during high temperatures in summer months. Archiv fur Tierzucht. 2009. Vol. 52. P. 574–586. DOI:10.5194/aab-52-574-2009
10. Effects of climate changes on animal production and sustainability of livestock systems / A. Nardone et al. Livestock Science. 2010. Vol. 130. P. 57–69. DOI:10.1016/j. livsci.2010.02.011
11. Food and Agriculture Organization of the United Nations (FAO): The Impact of Disasters on Agriculture –Assessing the information gap. URL:http://www.fao.org/3/ai7279e.pdf (last access: 21 December 2020), 2017.
12. Modelled performance of energy saving air treatment devices to mitigate heat stress for confined livestock buildings in Central Europe / R. Vitt et al. Biosystems Engineering. 2017. Vol. 164. P. 85–97. DOI:10. 1016/j. biosystemseng.2017.09.013
13. Broucek J., Letkovicová M., Kovalcuj K. Estimation of cold stress effect on dairy cows. International Journal of Biometeorology. 1991. Vol. 35. P. 29–32. DOI:10.1007/BF01040960
14. Angrecka S., Herbut P. Conditions for cold stress development in dairy cattle kept in free stall barn during severe frosts. Czech Journal of Animal Science. 2015. Vol. 60. P. 81–87. DOI:10.17221/7978-CJAS
15. A systematic review of non-productivity-related animal-based indicators of heat stress resilience in dairy cattle / E. Galan et al. PloSOne. 2018. Vol. 13. e0206520. DOI:10.1371/journal.pone.0206520,2018.
16. Mader T.L., Davis M., Brown-Brandl T. Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science. 2006. Vol. 84. P. 712–719. DOI:10.2527/2006.843712x
17. Johnson J.S. Heat stress: Impact on livestock wellbeing and productivity and mitigation strategies to alleviatethe negative effects. Animal Production Science. 2018. Vol. 58 (8). P. 1404–1413. DOI:10.1071/AN17725
18. Effect of artificial selection on runs of homozygosity in US Holstein cattle / E.S. Kim et al. PLoSOne. 2013. Vol. 8 (11). e80813. DOI:10.1371/journal.pone.0080813
19. The relationship between runs of homozygosity and inbreeding in Jersey cattle under selection / E.S. Kim et al. PLoSOne. 2015. Vol. 10 (7). e0129967. DOI:10.1371/journal.pone.0129967
20. Srikanth K., Kwon A., Lee E., Chung H. Characterization of genes and pathways that respond to heat stress in Holstein calves through transcriptome analysis. Cell Stress and Chaperones. 2017. Vol. 22. P. 29–42. DOI:10.1007/s12192-016-0739-8
21. Transcriptome Analysis Reveals Potential Regulatory Genes Related to Heat Tolerance in Holstein Dairy Cattle/ S. Liu et al. Genes. 2020. Vol. 11(1). 68 p. DOI:10.3390/genes11010068
22. Differences in Thermoregulatory Ability between Slick-Haired and Wild-Type Lactating Holstein Cows in Response to Acute Heat Stress / S. Dikmen et al. Journal of Dairy Science. 2008. Vol. 91(9). P. 3395–3402. DOI:10.3168/jds.2008-1072
23. Metabolic and hormonal acclimation to heat stress in domesticated ruminants / U. Bernabucci et al. Animal. 2010. Vol. 4 (7). P. 1167–1183. DOI:10.1017/S175173111000090X
24. The slick air coat locus maps to chromosome 20 in Senepol-derived cattle / R. Mariasegaram et al. Animal Genetics. 2007. Vol. 38. P. 54–59. DOI:10.1111/j.1365-2052.2007.01560.x
25. The genome landscape of indigenous African cattle / J. Kim et al. Genome Biology. 2017. Vol. 18. 34 p. DOI:10.1186/s13059-017-1153-y
26. Collier R.J., Collier J.L., Rhoads R.P., Baumgard L.H. Invited review: Genes involved in the bovine heat stress response. Journal of Dairy Science. 2008. Vol. 91(2). P. 445–454. DOI:10.3168/jds.2007-0540
27. Polymorphisms in the bovine HSP90AB1 gene are associated with heat tolerance in Thai indigenous cattle / R. Charoensook et al. Tropical Animal Health and Production. 2012. Vol. 44. P. 921–928. DOI:10.1007/s11250-011-9989-8
28. Two novel SNPs in HSF1 gene are associated with thermal tolerance traits in Chinese Holstein cattle / Q.L. Li et al. DNA and Cell Biology. 2011. Vol. 30. P. 247–254. DOI:10.1089/dna.2010.1133
29. Novel SNPs in HSP70A1Agene and the association of polymorphisms with thermos tolerance traits and tissue specific expression in Chinese Holstein cattle / Q. Li et al. Molecular Biology Reports. 2011. Vol. 38. P. 2657–2663. DOI:10.1007/s11033-010-0407-5
30. Genetic variations of HSBP1 gene and its effect on thermal performance traits in Chinese Holstein cattle / Y. Wang et al. Molecular Biology Reports. 2013. Vol. 40. P. 3877–3882. DOI:10.1007/s11033-012-1977-1
31. Nutritional strategies for alleviating the detrimental effects of heat stress in dairy cows: a review / L. Min et al. International Journal of Biometeorology. 2019. Vol. 63(9). P. 1283–1302. DOI:10.1007/s00484-019-01744-8
32. Chromium yeast alleviates heat stress by improving antioxidant and immune function in Holstein mid-lactation dairy cows / Q. Shan et al. Animal Feed Science and Technology. 2020. Vol. 269. 114635 p. DOI:10.1016/j.anifeedsci.2020.114635
33. Kadzere C.T., Murphy M.R., Silanikove N., Maltz E. Heat stress in lactating dairy cows: a review. Livestock Production Science. 2002. Vol. 77. P. 59–91. DOI:10.1016/ S0301-6226(01)00330-X
34. West J. Effects of heat-stress on production in dairy cattle. – Journal of Dairy Science. 2003. Vol. 86. P. 2131–2144. DOI:10.3168/jds.S0022-0302(03)73803-X
35. Effects of ambient temperature and rumen–protected fat supplementation on growth performance, rumen fermentation and blood parameters during cold season in Korean cattle steers / H.J. Kang et al. Asian-Australas Journal of Animal Science. 2019. Vol. 32(5). P. 657–664. DOI:10.5713/ajas.18.0621
36. Ghasemi E., Azad-Shahraki M., Khorvash M. Effect of different fat supplements on performance of dairy calves during cold season. Journal of Dairy Science. 2017. Vol. 100 (7). P. 5319–5328. DOI:10.3168/jds.2016-11827
37. Spiers D., Spain J., Sampson J., Rhoads R. Use of physiological parameters to predict milk yield and feed intake in heat stressed dairy cows. Journal of Thermal Biology. 2004. Vol. 29. P. 759–764. DOI:10.1016/j. jtherbio.2004.08.051
38. Impact of heat stress on health and performance of dairy animals: A review / R. Das et al. Veterinary World. 2016. Vol. 9(3). P. 260–268. DOI:10.14202/vetworld.2016.260-268
39. Lacetera N., Bernabucci U., Ronchi B., Nardone A. Body condition score, metabolicstatus and milk production of early lactating dairy cows exposed to warm environment. Rivista di AgricolturaSubtropicale e Tropicale (Italia). 1996. Vol. 90(1). P. 43–55.
40. Rojas-Downing M., Nejadhashemi P., Harrigan T., Woznicki S.A. Climate change and livestock: Impacts, adaptation, andmitigation. Climate Risk Management. 2017. Vol. 16. P. 145–163. DOI:10.1016/j.crm.2017.02.001
41. In utero exposure to heat stress during late gestation has prolonged effects on the activity patterns and growth of dairy calves / J. Laporta et al. Journal of Dairy Science. 2017. Vol. 100(4). P. 2976–2984. DOI:10.3168/jds.2016-11993
42. Effect of heat stress during early, late, and entire dry period on dairy cattle / T.F. Fabris et al. Journal of Dairy Science. 2019. Vol. 102. P. 5647–5656. DOI:10.3168/jds.2018-15721
43. Sunil Kumar B.V., Singh G., Meur S.K. Effects of Addition of electrolyte and ascorbic acid in feed during heat stress in buffaloes. Asian-Australasian Journal of Animal Sciences. 2010. Vol. 23(7). P. 880–888. DOI:10.5713/ajas.2010.90053
44. von Keyserlingk M.A.G., Rushen J., de Passille A.M., Weary D.M. Invited review: The welfare of dairy cattle – Key concepts and the role of science. – Journal of Dairy Science. 2009. Vol. 92. P. 4101–4111. DOI:10.3168/jds.2012-6354.
45. Effect of feeding Saccharomyces Cerevisiae on performance of dairy cows during summer heat stress / R.G.S. Bruno et al. Animal Feed Science and Technology. 2009. Vol. 150. P. 175–186. DOI:10.1016/j.anifeedsci.2008.09.001
46. Effect of feeding slowly fermentable grains on productive variables and amelioration of heat stress in lactating dairy cows in a sub-tropical summer / P.A. GonzalezRivas et al. Tropical Animal Health and Production. 2018. Vol. 50. P. 1763–1769. DOI:10.1007/s11250-018-1616-5
47. Supplementing an immunomodulatory feed ingredient to modulate thermoregulation, physiologic, and production responses in lactating dairy cows under heat stress conditions / T. Leiva et al. Journal of Dairy Science. 2017. Vol. 100(6). P. 4829–4838. DOI:10.3168/jds.2016-12258.
48. Evaluation of naturally ventilated dairy barn management by a thermographic method / I. Knizkova et al. Livestock Production Science. 2002. Vol. 77. P. 349–353. DOI:10.1016/S0301-6226(02)00062-3
49. Gregory N.G. The role of shelterbelts in protecting livestock: a review. New Zealand Journal of Agricultural Research. 1995. Vol. 38. P. 423–450. DOI:10.1080/ 00288233.1995.9513146
50. Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation / A. Yurchenko et al. Scientific Reports. 2018. Vol. 8. 12984. DOI:10.1038/s41598-018- 31304-w
51. The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate / R. Bouraoui et al. Animal Research. 2002. Vol. 51. P. 479–491. DOI:10.1051/animres:2002036
52. Dikmen S., Hansen P. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? Journal of Dairy Science. 2009. Vol. 92. P. 109–116. DOI:10.3168/jds.2008-1370
53. Environmental pollution caused by the manure storage / O.O. Borshch et al. Ukrainian Journal of Ecology. 2020. Vol. 10(3). P. 110–114.
54. Borshch O.O., Ruban S., Borshch O.V. Review: the influence of genotypic and phenotypic factors on the comfort and welfare rates of cows during the period of global climate changes. Agraarteadus. 2021. Vol. 32(1). P. 25–34. DOI:10.15159/jas.21.12.
55. The impact of high temperatures on respiration rate, breathing condition and productivity of dairy cows in different production systems / S. Ruban et al. Animal Science Papers and Reports. 2020. Vol. 38(l). P. 61–72.
56. The influence of climatic conditions on physiological and behavioural parameters in dairy cows kept in open stables / M. Zähneret al. Animal Science. 2004. Vol. 78. P. 139–147.
57. Dahl G.E., Tao S., Laporta J. Late gestation heat stress of dairy cattle programs dam and daughter milk production. Journal of Animal Science. 2017. Vol. 95. P. 5701–5710. DOI:10.2527/jas2017.2006
58. Legrand A.L., von Keyserlingk M.A.G., Weary D.M. Preference and usage of pasture versus free-stall housing by lactating dairy cattle. Journal of Dairy Science. 2009. Vol. 92. P. 3651–3658. DOI:10.3168/jds.2008-1733
59. Influence of Free-Stall Flooring on Comfort and Hygiene of Dairy Cows during Warm Climatic Conditions / P. De Palo et al. Journal of Dairy Science. 2004. Vol. 89(12). P. 4583–4595. DOI:10.3168/jds.S0022-0302(06)72508-5
60. Blackshaw J.K., Blackshaw A.W. Heat stress in cattle and the effect of shade on production and behavior: A review. Animal Production Science. 1994. Vol. 34. P. 285– 295. DOI:10.1071/ea9940285
61. The effects of providing shade to lactating dairy cows in a temperate climate / P.E. Kendall et al. Livestock Science. 2006. Vol. 103. P. 148–157. DOI:10.1016/j. livsci.2006.02.004.
62. Eigenberg R., Brown-Brandl T., Nienaber J., Hahn G.L. Dynamic Response Indicators of Heat Stress in Shaded and Non-shaded Feedlot Cattle, Part 2: Predictive Relationships. Biosystem Engineering. 2005. Vol. 91(1). P. 111–118. DOI:10.1016/j.biosystemseng.2005.02.001
63. Dairy cattle prefer shade over sprinklers: effects on behaviour and physiology / K.E. Schützet al. Journal of Dairy Science. 2011. Vol. 94. P. 273–283. DOI:10.3168/jds.2010-3608
64. Tucker C.B.A., Rogers A.R., Schütz K.E. Effect of solar radiation on dairy cattle behaviour, use of shade and body temperature in a pasture-based system. Applied Animal Behaviour Science. Vol. 109. P. 141–154. DOI:10.1016/j. applanim.2007.03.015
65. Evaporative tunnel cooling of dairy cows in the southeast. I: effects on body temperature and respiration rate / T.R. Smith et al. Journal of Dairy Science. 2006. Vol. 89. P. 3904–3914. DOI:10.3168/jds.S0022-0302(06)72433-X
66. Effects of evaporative cooling on reproductive performance and milk production of dairy cows in hot wet conditions / S. Khongdee et al. International Journal of Biometeorology. 2006. Vol. 50. P. 253–257. DOI:10.1007/ s00484-006-0030-2
67. Effects of high air temperatures on milk efficiency in dairy cows / J. Broucek et al. Czech Journal of Animal Science. 2006. Vol. 51. P. 93–101.
68. Legrand A., Schütz K.E., Tucker C.B. Using water to cool cattle: Behavioral and physiological changes associated with voluntary use of cow showers. Journal of Dairy Science. 2011. Vol. 94. P. 3376–3386. DOI:10.3168/jds.2010-3901
69. Angrecka S., Herbut P. Impact of barn orientation on insolation and temperature of stalls surface. Annals of Animal Science. 2016. Vol. 16. P. 887–896. DOI:10.1515/aoas-2015- 0096
70. The effects of providing shade to lactating dairy cows in a temperate climate / P.E. Kendall et al. Livestock Science. 2006. Vol. 103. P. 148–157. DOI:10.1016/j.livsci.2006.02.004
71. Performance of lactating dairy cattle in three different cooling systems / M.J. Meyer et al. Applied Engineering in Agriculture. 2002. Vol. 18. P. 341–345. DOI:10.13031/2013.8596
72. Thermal, productive and reproductive response of high yielding cows exposed to short-term cooling in summer /E. Her et al. Journal of Dairy Science. 1988. Vol. 71. P. 1085–1092. DOI:10.3168/jds.S0022-0302(88)79656-3
73. Wolfenson D., Flamenbaum I., Berman A. Hyperthermia and body energy store effects on estrous behavior, conception rate, and corpus luteum function in dairy cows. Journal of Dairy Science. 1988. Vol. 71. P. 3497– 3504. DOI:10.3168/jds.S0022-0302(88)79956-7
74. Evaporative tunnel cooling of dairy cows in the southeast: II: impact on lactation performance / T.R. Smith et al. Journal of Dairy Science. 2006. Vol. 89. P. 3915–3923. DOI:10.3168/jds.S0022-0302(06)72434-1
75. Invited review: Sustainability of the US dairy industry / M.A.G. von Keyserlingk et al. Journal of Dairy Science. 2013. Vol. 96. P. 5405–5425. DOI:10.3168/jds.2012-6354
76. Chen J.M., Schutz K.E., Tucker C.B. Sprinkler flow rate affects dairy cattle preferences, heat load, and insect deterrence behavior. Applied Animal Behaviour Science. 2016. Vol. 182. P. 1–8. DOI:10.1016/j.applanim.2016.05.023
77. Effect of cooling Holstein cows during the dry period on postpartum performance under heat stress conditions /L. Avendano-Reyes et al. Livestock Science. 2006. Vol. 105. P. 198–206. DOI:10.1016/j.livsci.2006.06.009
78. Heat abatement / T. Bailey et al. Elanco Dairy Business Unit. 2016. URL:https://assets. ctfassets.net
79. Wu W., Zhai J., Zhang G., Nielsen P.V. Evaluation of methods for determining air exchange rate in a naturally ventilated dairy cattle building with large openings using computational fluid dynamics (CFD). Atmospheric Environment. 2012. Vol. 63. P. 179–188. DOI:10.1016/j.atmosenv.2012.09.042
80. Herbut P. Temperature, humidity and air movement variations inside a free-stall barn during heavy frost. Annals of Animal Science. 2013. Vol. 13(3). P. 587–596. DOI:10.2478/ aoas-2013-0025
81. Berman A. An overview of heat stress relief with global warming in perspective. International Journal of Biometeorology. 2019. Vol. 63(4). P. 493–498. DOI:10.1007/ s00484-019-01680-7
82. Assessing effects of wind speed and wind direction on discharge coefficient of sidewall opening in a dairy building model – A numerical study / Q. Yi et al. Computers and Electronics in Agriculture. 2019. Vol. 162. P. 235–245. DOI:10.1016/j.compag.2019.04.016
83. Q fever infection in dairy cattle herds: Increased risk with high wind speed and low precipitation / S. Nusinovici et al. Epidemiology and Infection. 2015. Vol. 143(15). P. 3316–3326. DOI:10.1017/S0950268814003926
84. Rong L., Liu D., Pedersen E.F., Zhang G. The effect of wind speed and direction and surrounding maize on hybrid ventilation in a dairy cow building in Denmark. Energy and Buildings. 2015. Vol. 86. P. 25–34. DOI:10.1016/j. enbuild.2014.10.016
85. Wind speed in easily assembled premises with different design constructions for side curtains in winter / O.O. Borshch et al. Ukrainian Journal of Ecology. 2021. Vol. 11(1). P. 325–328. DOI:10.15421/2021_49
86. Comfort and cow behavior during periods of intense precipitation / O.O. Borshch et al. Ukrainian Journal of Ecology. 2020. Vol. 10(6). P. 98–102. DOI:10.15421/2020_265
87. Borshch A.A., Ruban S., Borshch A.V., Babenko O.I. Effect of three bedding materials on the microclimate conditions, cows behavior and milk yield. Polish Journal of Natural Sciences. 2019. Vol. 34(1). P. 19–31.
88. Borshch O.O., Borshch O.V., Fedorchenko M.M. Influence of low temperatures on heat balance in easily assembled premises of different types. Ukrainian Journal of Veterinary and Agricultural Sciences. 2021. Vol. 4(2). P. 27–30. DOI:10.32718/ujvas4-2.05
Долучення | Розмір |
---|---|
borshch_2_2021.pdf | 569.73 КБ |